Matemática Daniel Acosta Nº 27/11/10 14,0 Números Complexos - Polinômios Ler a avaliação com atenção. Não usar corretor. Resposta final a caneta. Não serão aceitas reclamações de questões rasuradas ou com o uso do corretor. Toda questão deve apresentar desenvolvimento!!!!!!! NÚMEROS COMPLEXOS (6,0) 1. Dados os números complexos z1 a bi e z2 1 2i . Como z1 z2 15 , então z1 z 2 é igual a: a) 8 – 2i. c) 6 + i. b) 4 +4i. d) 4. b) Z 2 3 2i e) 8. 2. Se i é a unidade imaginária, qual é o valor de i 25 i 39 i 107 i i 50 ? 3. Dados os números complexos Z1 2 3i e Z 2 2 3i , determine: a ) Z1 Z 2 b) Z 22 4. Sejam os números complexos Z1 1 i e Z 2 3 2i , determine: Z a) 1 Z2 Z b) 2 Z1 5. Sejam os números Z1 2 5i , Z 2 3 2i e Z 3 3i . Determina: a)( Z 2 Z3 ) ( Z 2 Z1 ) b) Z1 Z3 6. Escreva os seguintes números complexos na forma trigonométrica: a) Z 1 i 3 7. Sabendo que é um número real e que a parte 2i imaginária do número complexo é zero, então é: 2i a )3 . b)1. c ) 4. d ) 3. e ) 4. 8. O valor simplificado da expressão 2i . 2 3i b) . 9 1 i c) 4 a) 1 i é: 3i 4i 2 2i e) 5 d) 9. Seja o complexo z i(1 i) 2i , seu módulo é: a ) 3. d )2. b) 2 . e)3. c)1. 10. Para que valores reais de x o número complexo z (2 x 3) ( x 2 3x)i é número real? c) Z12 Cada acerto tem o valor de 0,4. POLINÔMIOS (8,0) 1. Se p( x) x 3 kx 2 3x 2k , para que valores de k temos p(2) 4 . a bx c 1 , com x 0 e x 3, determine x x 2 x 2 2x os valores de a, b e c. 7. Dado 8. Sabendo-se que a única raiz positiva de x 7 x 7 x 15 0 é x = 1, pode-se afirmar que a soma 3 2. Determine m e n de modo que o polinômio x 4 mx 3 3x 2 nx 6 seja divisível por x 1 e x 2 . 2 das outras duas raízes vale: a) – 5. b) – 7. c) –6. d) – 8. e) – 9. 3. Sabendo que 2 é raiz de p( x) x 2 mx 6 , determine o valor de m. 9. Sabendo que raiz do polinômio 2 é 3 2 p( x) 2 x mx 5x 6 , determine o valor de m. da P(1) P(2) . 10. Para que o polinômio x3 4 x 2 px 6 seja divisível por x 2 é necessário que p seja igual a: a) 15. b) 7. c) – 7. d) – 15. e) nda. 5. Determine o valor de a para que o resto da divisão do polinômio p( x) ax 3 2 x 5 por h( x) x 3 seja igual a 10. 11. Sabendo 4. Seja o polinômio P( x) x 4 3x 2 5 . Calcule o valor 6. Aplicando o dispositivo de Ruffini obtenha os quocientes e os restos das seguintes divisões: a) x3 3x2 7 x 10 por x 3 . p(1) 0 , determine o valor de a em p( x) 2 x 3 4 x 2 3x 2a . 12. Dados os polinômios A( x) x 3 x 2 x 1 e B( x) 3x 2 x 2 , determine A(1) B(1) . b) x5 3x3 x2 10 por x 1 . Cada acerto tem o valor de 0,61