LISTA DE FÍSICA I – ONDAS – 3º PERÍODO Data: Aluno (a): Série: 2ª Ensino Médio Turma: Prof. Marcelo Franco 1. A luz visível que atravessa um buraco de fechadura praticamente não sofre desvio porque: (A) os comprimentos de onda da luz são muito menores que as dimensões do buraco da fechadura (B) os comprimentos de onda da luz são muito maiores que as dimensões do buraco da fechadura (C) os comprimentos de onda da luz têm dimensões da ordem daquelas do buraco da fechadura (D) a luz sempre se propaga na mesma direção (E) a luz só muda de direção de propagação quando passa de um meio para outro 2. Um raio de luz de frequência igual a 5,0 x 1014 Hz passa do ar para o benzeno. O comprimento de onda desse raio de luz no benzeno será: (Dados: Índice de refração do benzeno = 1,5; velocidade da luz no vácuo = 3,0 x 108 m/s) (A) 3,0x10–5 m (B) 4,0 x 10–7 m (C) 5,0x10–6 m (D) 9,0 x 10–7 m (E) 3,0x10–6 m 3. Ondas sonoras emitidas no ar por dois instrumentos musicais distintos, I e II, têm suas amplitudes representadas em função do tempo pelos gráficos abaixo. (II) A propriedade que permite distinguir o som dos dois instrumentos é: (A) o comprimento de onda (B) a amplitude (C) o timbre (D) a velocidade de propagação (E) a frequência 4. Uma onda se propaga no meio 1, não dispersivo, com velocidade v1, frequência f1 e comprimento de onda 1. Ao penetrar no meio 2, sua velocidade de propagação v2 é três vezes maior que v1, sua frequência é f2 e seu comprimento de onda é 2. Logo, conclui-se que: (A) 2 = 1 1 e f2 = f1 (B) 2 = 1 (C) 2 = 1 (D) 2 = 31 e e e f2 = 3 f1 f2 = f1 f2 = f1 (E) 2 = 1 e f2 = 3 Colégio A. LIESSIN – Scholem Aleichem 1 3 f1 -1- NANDA/SET/2014 5. O sistema da figura é constituído de uma mola ideal e um bloco, estando livre para oscilar verticalmente. O gráfico que melhor ilustra como a energia potencial da mola (U) varia em função do deslocamento da mesma, em relação à posição de equilíbrio (x), é: 6. A figura representa a propagação de dois pulsos em cordas idênticas e homogêneas. A extremidade esquerda da corda, na situação I, está fixa na parede e, na situação II, está livre para deslizar, com atrito desprezível, ao longo de uma haste. situação I situação II Identifique a opção em que estão mais bem representados os pulsos refletidos nas situações I e II: (A) (D) I II (B) I II I II (E) I II I II (C) Colégio A. LIESSIN – Scholem Aleichem -2- NANDA/SET/2014 7. Em 1581, na Catedral de Pisa, Galileu teve sua atenção despertada para um candelabro que oscilava sob a ação do vento, descrevendo arcos de diferentes tamanhos. Reproduzindo esse movimento com um pêndulo simples de comprimento L e massa m, como o representado na figura ao lado, Galileu constatou que o tempo de uma oscilação pequena (para a qual sen ) era função: (A) do comprimento do pêndulo, de sua massa e da aceleração da gravidade (B) apenas do comprimento do pêndulo (C) do comprimento do pêndulo e da aceleração da gravidade (D) apenas da aceleração da gravidade (E) apenas da massa do pêndulo 8. Para observar alguns tipos de tumores em tecidos animais utilizando-se ultrassom, o comprimento de onda sonora deve ser menor que o tamanho típico dos tumores, isto é, deve ser menor que 3,0 x 10-4 m. Considerando que a velocidade de onda sonora nesses tecidos animais é, aproximadamente, 1,4 x 103 m/s, a frequência do ultrassom deve ser maior que: (A) 2,1 x 107 Hz (B) 4,7 x 106 Hz (C) 1,2 x 104 Hz (D) 3,4 x 102 Hz (E) 4,2 x 10-1 Hz 9. Ao iluminar a caverna, o espeleologista descobre um lago cristalino e observa que a água de uma infiltração através das rochas goteja periodicamente sobre o lago, provocando pulsos ondulatórios que se propagam em sua superfície. Ele é capaz de estimar a distância (d) entre dois pulsos consecutivos, assim como a velocidade (v) de propagação dos mesmos. Com o aumento da infiltração, o gotejamento aumenta e a quantidade de gotas que cai sobre a superfície do lago, por minuto, torna-se maior. Comparando essa nova situação com a anterior, o espeleologista observa que: (A) v permanece constante e d aumenta; (B) v aumenta e d diminui; (C) v aumenta e d permanece constante; (D) v permanece constante e d diminui; (E) v e d diminuem. 10. Agitando-se a extremidade de uma corda esticada na horizontal, produz-se uma sequência de ondas periódicas denominada "trem de ondas", que se propaga com velocidade v constante, como mostra a figura. Considerando a velocidade v = 10 m/s e a distância entre uma crista e um vale adjacentes, x = 20 cm, o período T de oscilação de um ponto da corda por onde passa o trem de ondas é, em segundos: a) 0,02 b) 0,04 c) 2,0 d) 4,0 e) Impossível determinar, já que depende da amplitude do trem de ondas. Colégio A. LIESSIN – Scholem Aleichem -3- NANDA/SET/2014 11. A velocidade de propagação de uma tsunami em alto mar pode ser calculada com a expressão onde g é a aceleração da gravidade e h a profundidade local. A mesma expressão também se aplica à propagação de ondas num tanque de pequeno tamanho. Considere a situação mostrada no esquema, onde uma torneira goteja, a intervalos regulares, sobre o centro de um tanque que tem duas profundidades diferentes. Identifique o esquema que melhor representa as frentes de onda geradas pelo gotejamento. 12. Uma mola, que apresenta uma determinada constante elástica, está fixada verticalmente por uma de suas extremidades. Ao acoplarmos a extremidade livre a um corpo de massa M, o comprimento da mola foi acrescido de um valor X, e ela passou a armazenar uma energia elástica E. Em função de X2, o gráfico que melhor representa E está indicado em: Colégio A. LIESSIN – Scholem Aleichem -4- NANDA/SET/2014 13. Seja β a altura de um som, medida em decibéis. Essa altura β está relacionada com a intensidade do som, I, pela expressão abaixo, na qual a intensidade padrão, I0, é igual a 10−12 W/m2. Sabendo que há risco de danos ao ouvido médio a partir de 90 dB, o número de fontes da tabela cuja intensidade de emissão de sons está na faixa de risco é de: (A) 1 (B) 2 (C) 3 (D) 4 14. Uma campainha emite som com freqüência de 1 kHz. O comprimento de onda dessa onda sonora é, em centímetros, igual a: (velocidade do som no ar = 340 m/s) (A) 1 (B) 7 (C) 21 (D) 34 15. Considere uma corda de violão, esticada e fixada nos pontos A e I, na qual são colocados pedacinhos de papel sobre os pontos D, E, F, G e H, conforme a figura abaixo. Observe que as distâncias entre cada ponto e seus vizinhos são todas iguais. Com dois dedos de uma das mãos, comprime-se o ponto C e com um dedo da outra mão levanta-se a corda pelo ponto B, soltando-a em seguida. Nessa situação, os pedacinhos de papel que serão jogados para cima correspondem aos seguintes pontos da corda: (A) D, E, G (B) D, F, H Colégio A. LIESSIN – Scholem Aleichem (C) E, F, G -5- (D) F, G, H NANDA/SET/2014 Instruções: para responder às questões de números 16 e 17 utilize as informações e o esquema abaixo. Um bloco de massa 4,0 kg, preso à extremidade de uma mola de constante elástica 252 N/m, está em equilíbrio sobre uma superfície horizontal perfeitamente lisa, no ponto O, como mostra o esquema. O bloco é então comprimido até o ponto A, passando a oscilar entre os pontos A e B. 16. O período de oscilação do bloco, em segundos, vale: a) 20 b) 8,0 c) d) 0,80 e) 0,80 17. A energia potencial do sistema (mola + bloco) é máxima quando o bloco passa pela posição: a) A, somente b) O, somente c) B, somente d) A e pela posição B e) A e pela posição O 18. Uma onda periódica se propaga numa corda fina com velocidade de 8,0 m/s e comprimento de onda igual a 40 cm. Essa onda se transmite para outra corda grossa onde a velocidade de propagação é 6,0 m/s. Na corda grossa, essa onda periódica tem frequência em hertz e comprimento de onda em centímetro, respectivamente, iguais a: a) 20 e 60 b) 20 e 30 c) 15 e 60 d) 15 e 30 e) 15 e 20 19. A figura mostra ondas estacionárias em uma corda de comprimento 1,0 m, vibrando em seu modo fundamental e nos primeiros harmônicos. Supondo que a velocidade de propagação destas ondas seja igual a 500 m/s, as frequências, em hertz, do modo fundamental e dos harmônicos seguintes, valem, respectivamente: a) 1 000; 750; 500; 250 b) 1 000; 250; 500; 750 c) 1 000, para todos os modos d) 250; 500; 750; 1 000 e) 500; 500; 1 000; 1 000 20. Uma proveta graduada tem 40,0 cm de altura e está com água no nível de 10,0 cm de altura. Um diapasão de frequência 855 Hz, vibrando próximo à extremidade aberta da proveta, indica ressonância. Uma onda sonora estacionária possível é representada na figura abaixo. A velocidade do som, nessas condições, é, em metros por segundo: a) 326 b) 334 c) 342 d) 350 e) 358 Colégio A. LIESSIN – Scholem Aleichem -6- NANDA/SET/2014