XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 POSSIBILIDADES PARA ENSINAR MATEMÁTICA NA ESCOLA INDÍGENA TICUNA Lucélida De Fátima Maia Da Costa RESUMO As dificuldades presentes no processo de ensino da matemática não são privilégio da escola pública, porém é nela que as nuances dessa problemática mais se evidenciam, principalmente, quando não se leva em consideração o contexto sociocultural no qual a escola está inserida, como é o caso da maioria das escolas indígenas. Aqui, apresentamse resultados de uma pesquisa desenvolvida numa aldeia Ticuna localizada na fronteira do Brasil com a Colômbia e o Peru, na qual, por meio de aportes etnográficos foi possível perceber que quando o processo de ensino da matemática é feito partindo do contexto dos estudantes e levando em consideração seus conhecimentos prévios criamse mais oportunidades de desencadear aprendizagem. Nesse sentido, a pesquisa mostra que o processo de confecção de cestos, abre possibilidades para o ensino de diversos conceitos matemáticos como o de progressão geométrica, dentre outros. Para a identificação da matemática presente na confecção dos cestos foi necessário, além da realização de entrevistas, um longo período de observação e convivência com mulheres Ticuna que têm, atualmente, na produção desses objetos, uma fonte de ingresso financeiro. A análise do processo de confecção dos cestos mostrou que estes objetos podem se tornar elementos enriquecedores da prática e da didática do professor de matemática por fazerem parte do contexto sociocultural dos estudantes Ticuna e apresentarem noções matemáticas relacionáveis a conceitos matemáticos presentes nas propostas curriculares da escola indígena. Assim, pode-se afirmar que os cestos e seu processo de confecção, se bem utilizados, podem contribuir com a melhoria do processo de ensino e de aprendizagem da matemática na escola indígena Ticuna. Palavras-chave: Ensino de Matemática. Didática da Matemática. Escola Indígena. Cestos Ticuna. INTRODUÇÃO Neste artigo discute-se sobre os aspectos metodológicos que norteiam o processo de ensino da matemática, pois da forma como este ainda se realiza, nas escolas inseridas em aldeias indígenas, sem considerar o contexto sociocultural dos estudantes e sem fazer a devida recontextualização do saber científico, torna a aprendizagem dos estudantes certamente mais difícil. As questões discutidas são resultantes de uma pesquisa etnográfica desenvolvida na aldeia Ticuna Umariaçu, localizada no extremo oeste do estado do Amazonas, na fronteira do Brasil com a Colômbia e o Peru. A pesquisa tinha como um de seus pilares a Teoria Sócio-histórica e seu objetivo era compreender os processos cognitivos mobilizados na confecção de cestos e esteiras Ticuna que constituem elementos de apropriação para a educação matemática na escola indígena Ticuna. Junqueira&Marin Editores Livro 3 - p.004690 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 2 A investigação possibilitou um longo período de convivência com mulheres ticunas, com as quais se aprendeu a confeccionar cestos e esteiras, objetos de estudo da pesquisa. No tangente ao ensino formal, para conhecer as imagens que os estudantes ticunas tinham da matemática ensinada na escola e da matemática vivida na aldeia foram realizadas entrevistas e aplicados questionários a estudantes do ensino fundamental e médio, os quais, além das questões continham o pedido para o estudante materializar suas respostas por meio de desenhos. Os resultados ratificam o pensamento de que não há uma única teoria que responda as necessidades de compreensão da complexidade das relações que se estabelecem no âmbito escolar, em especial na aula de matemática e que é imprescindível atentar para as implicações da prática docente, em contextos diferenciados como o da escola indígena Ticuna. As compreensões resultantes da pesquisa e apresentadas neste trabalho estão organizadas em três tópicos que são comentados a seguir. FUNDAMENTOS EPISTEMOLÓGICOS PARA UMA DIDÁTICA DA MATEMÁTICA EM CONTEXTOS INDÍGENAS O ato de ensinar matemática, em qualquer contexto, requer muito mais do que a simples explanação de conteúdos específicos e uso de distintas estratégias de ensino, requer do sujeito que ensina – professor –, consciência de sua concepção epistemológica, pois dela depende todo o resto do processo que se desencadeia no ambiente escolar (PAIS, 2006). Uma concepção epistemológica é um conjunto de convicções, de conhecimentos e de saberes científicos, os quais tendem a dizer o que são os conhecimentos dos indivíduos ou de grupos de pessoas, como funcionam, os modos de estabelecer sua validade, bem como adquiri-los e então de ensinálos e aprendê-los (D’AMORE, 2007, p.3). Assim, numa escola indígena o ato de ensinar, em especial matemática, requer a compreensão de que o meio sociocultural dos alunos interfere e se reflete no processo de ensino e de aprendizagem dos sujeitos e isso, implica pensar que as formas de se ensinar devem estar diretamente relacionadas às formas culturais de aprender. Em contexto indígena de modo geral, e em particular entre os Ticuna, os sujeitos aprendem na interação, no convívio uns com os outros. Nesse convívio sofrem e exercem influência, transformam e são transformados nas relações produzidas na sua cultura. Aprendem sua história ao mesmo tempo em que a escrevem. Junqueira&Marin Editores Livro 3 - p.004691 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 3 Ao admitir a interação dos sujeitos como base para a aprendizagem em contexto indígena, não se pode pensar num processo de ensino e aprendizagem escolar efetivado de forma dicotômica entre aspectos biológicos e socioculturais, ou seja, na escola indígena há que se levar em consideração que a aprendizagem é fruto da “interação dialética que se dá, desde o nascimento, entre o ser humano e o meio social e cultural que se insere” (LEONTIEV et al, 2005, p.93). Esse entrelaçar de influências conduz a uma compreensão de aprendizagem numa perspectiva Vygotskiana, pois se considera que “[…] a aprendizagem adequadamente organizada resulta em desenvolvimento mental e põe em movimento vários processos de desenvolvimento que, de outra forma, seriam impossíveis de acontecer”. (VYGOTSKY, 1988, p.101). Do ponto de vista da teoria sociointeracionista – a teoria Vygotskiana – os saberes do aluno devem ser considerados ao se pensar o ensino de matemática na escola. O aluno deve ser desafiado, mas respeitado em sua forma de aprender e isso implica naturalmente cuidado com a forma de ensinar. Sugere pensar numa didática da matemática para “conceber e conduzir condições que podem determinar a aprendizagem de um conhecimento matemático por parte de um sujeito [...]” (D’AMORE, 2007, p.4). Para tanto, a concepção epistemológica do professor não pode assumir extremos radicais como aquela que considera o aluno apenas um receptáculo onde a aprendizagem é mero fruto de amadurecimento biológico ou, aquela que o vê somente como consequência de fatores socioculturais, onde seu comportamento é definido pelo grupo ao qual pertence com pouca ou nenhuma chance de modificações a partir das relações estabelecidas no ambiente escolar. O professor deve ter clareza de suas convicções, pois estas são determinantes de sua forma de ensinar a qual deve ser composta por distintas e diferentes linguagens, além do conhecimento e respeito à cultura na qual a escola está inserida. É necessário lembrar que formas diferentes de aprender requerem formas distintas de ensinar, ou seja, se o sujeito no convívio na sociedade da qual é integrante, aprende observando, imitando, interagindo, no ambiente escolar será ineficiente, por exemplo, um ensino desenvolvido apenas através da exposição oral. O ENSINAR E O VIVER MATEMÁTICO NUMA ALDEIA TICUNA A localização geográfica da aldeia Umariaçu leva as pessoas que nela habitam a desenvolver relações de comércio de cunho internacional, pois as transações de compra Junqueira&Marin Editores Livro 3 - p.004692 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 4 e venda se efetivam nas moedas dos três países que compõem a tríplice fronteira e isto contribui para a riqueza de noções matemáticas presentes no cotidiano dos ticunas. No entanto, a diversidade de interações presente no cotidiano do estudante ticuna que vive no Umariaçu é despercebida ou ignorada quando se trata de ensino de matemática na escola. Tal ensino evidencia uma dicotomia entre a matemática vivida e a ensinada na escola como se percebeu nas concepções de alunos que participaram da pesquisa. A maioria dos alunos não concebe ou não relaciona a matemática que estuda com as coisas que tem em sua cultura, no entorno do ambiente escolar ou no interior da aldeia. Esta situação se tornou evidente nas entrevistas realizadas com alunos do 6º ano até o 3º ano do ensino médio, com idades entre os 12 e 42 anos. Foi perguntado aos alunos o que era matemática para eles e lhes pediu para desenhar a matemática que estudam na escola, e a que percebem ou concebem fora dela. As respostas foram diversas e os desenhos evidenciaram ideias e conceitos matemáticos implícitos, que muitas vezes, contradiziam suas palavras ou expressavam a verdadeira ideia do que é a matemática em suas vidas. Os desenhos mostrados representam um grupo de outros desenhos com características semelhantes, visto que muitas das respostas obtidas eram iguais ou muito parecidas em muitos aspectos. As figuras 1 e 2 são os desenhos de uma estudante do 1º ano do ensino médio, de 18 anos. Quando lhe perguntou o que era matemática, esta aluna respondeu que não sabia, mas em seu primeiro desenho fez um esboço do plano cartesiano, um dos conteúdos que estava estudando na escola. Em seu segundo desenho a estudante reproduz uma amarelinha (jogo do macaquinho entre os ticunas), um jogo comum entre as crianças, aonde os números representam as posições que o jogador tem que saltar até chegar ao final. Para esta aluna, a matemática percebida fora do contexto escolar está fortemente expressa na representação numérica, pois, ela, ao interpretar seus desenhos, fala que onde vê números, então aí há matemática. Esta situação permite pensar na ausência de relação dessa representação com os significados culturais das práticas tradicionais que envolvem idéias matemáticas vividas fora do contexto escolar, pois, em seu cotidiano, esta aluna confecciona bolsas e cestos e os vende na cidade, atividade que requer e expressa ideias matemáticas que vão além da presença de números nos jogos vividos fora da sala de aula. Junqueira&Marin Editores Livro 3 - p.004693 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 5 As figuras 3 e 4 são desenhos de um estudante do 8° ano do ensino fundamental, de 14 anos que, embora não tenha respondido, por escrito, o que é matemática para ele, ao observar seus desenhos, observa-se que a matemática está ligada às formas, pois no seu primeiro desenho as formas expressam a matemática que ele vê: as formas da mesa, os lápis e a bolsa do professor sobre a mesa. Poder-se-ia pensar que a geometria está evidentemente exposta nesse desenho, mas ao interpretar seu desenho o estudante diz que “de dentro da bolsa, o professor tira os livros que utiliza para lhes ensinar matemática e os lápis são os instrumentos que o professor utiliza para escrever”. Percebe-se então, que não é a geometria está representada, mas somente uma alusão aos instrumentos que o professor de matemática utiliza para trabalhar, o que permite questionar qual seria o significado do que este profissional está fazendo nas suas aulas. Estaria a prática docente cumprindo seu papel de recontextualizar o saber procurando situações que dêem sentido ao que está ensinando? (BROUSSEAU, 1996). Não obstante, em seu segundo desenho, o aluno faz uma representação de uma árvore de onde retira alimento, a palma Mauritia flexuosa (buriti), para o consumo e para a venda. Durante a entrevista este aluno demonstra que a matemática percebida fora da escola está expressa nos preços das coisas que precisa comprar, principalmente nas relações comerciais. Decorrente deste panorama, afirma-se que “o saber matemático é fundamental para a compreensão da realidade e está, neste sentido, intimamente articulado às atividades cotidianas que cada sociedade desenvolve” (BRASIL, 2002, p.161). Toda riqueza de noções matemáticas disponível na cultura ticuna expressa em seus artesanatos, em suas construções e na pintura corporal não está, aparentemente, sendo percebida no processo de ensino e aprendizagem na escola. Tudo isto, pode desencadear uma desmotivação para a aprendizagem, posto que os conteúdos ensinados pouco ou nada significam para estes alunos que vivem rodeados de formas e expressões matemáticas que poderiam ser utilizadas como ponto de partida para o ensino da matemática escolar. O ENTRELAÇAR ENTRE A MATEMÁTICA VIVIDA E A MATEMÁTICA ENSINADA: POSSIBILIDADES PARA ENSINAR MATEMÁTICA NA ESCOLA TICUNA Junqueira&Marin Editores Livro 3 - p.004694 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 6 No cotidiano do povo Ticuna a confecção de cestos e tapetes está sempre muito presente seja como utensílios domésticos ou como bens de comércio. É uma atividade tradicionalmente feminina que nos dias atuais envolve todos os membros da família. Hoje, muitas famílias vivem da confecção e venda desses objetos. O processo de confecção de cestos e esteiras envolve muitos conhecimentos tradicionais na obtenção e manejo da matéria prima. Ademais ao observar o processo de confecção de esteiras circulares, assim como, no princípio dos cestos de forma cilíndrica, percebe-se que os conhecimentos tradicionais, muitas vezes, expressam noções matemáticas relacionáveis aos conteúdos matemáticos presentes no currículo escolar. Observando-se, por exemplo, a confecção de uma esteira circular confeccionada com tucumã ou tucum, percebe-se que a tecedora inicia o processo sobrepondo dois pares de talas de tucumã, de forma perpendicular como mostrado na figura 5. Neste princípio, é necessário, que as talas sejam agrupadas em pares para que a base do trançado seja forte e não muito flexível. O princípio da trama permite pensar na possibilidade para o trabalho com números pares, com os elementos do círculo: raio e diâmetro, o comprimento da circunferência, a área do círculo a partir da estimativa da quantidade de matéria prima a ser usada, etc., além dos conceitos geométricos como ângulos retos e bissetrizes. O crescimento da trama mostra um desenvolvimento segundo uma progressão geométrica de razão 2, pois depois de sobrepor as talas do tucumã com a finalidade de formar 4 ângulos retos, a tecedora subdivide estes 4 ângulos segundo suas bissetrizes, ou seja, reparte cada ângulo em dois ângulos de medidas iguais fazendo que o trançado apresente agora 8 ângulos de aproximadamente 45º cada um, como se observa nas figuras 7 e 8. Essa divisão é necessária para formar a base adequada para o princípio de um trançado circular. O trançado é desenvolvido até certo ponto, que depende principalmente do padrão de estética da tecedora e da estimativa que faz do tamanho da abertura dos ângulos, pois, ela utiliza a percepção visual para determinar o momento de dividir novamente os ângulos. Nesse processo fica explícito o aguçado poder de observação, comparação e o senso de estética da tecedora, os quais determinam o processo de divisão dos ângulos segundo as bissetrizes até que o trançado chegue ao tamanho desejado pela tecedora. Junqueira&Marin Editores Livro 3 - p.004695 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 7 Como resultante desse processo tem-se a representação de uma progressão geométrica de razão 2; pois a esteira circular iniciada tem um crescimento que pode ser representado pela P.G. (4, 8, 16, 32, 64, 128). A percepção de noções matemáticas nos trançados Ticuna não é uma tarefa difícil e a apreciação destes objetos na escola permite aos estudantes a identificação de noções que podem ser o fio condutor entre os conteúdos oficiais (constante das propostas curriculares) e os conhecimentos prévios carregados de significados culturais que possibilitarão a consolidação da aprendizagem dos conteúdos de diversas disciplinas e, em particular, da matemática. Os conhecimentos e pensamentos matemáticos implícitos no processo de confecção das esteiras, por exemplo, podem ter um efeito facilitador da aprendizagem de conceitos matemáticos formais e funcionar como ponte entre o que o estudante já sabe e o que está tentando aprender. Pois para Moreira, Caballero e Rodríguez (1997, p.18), os organizadores prévios podem servir para “estabelecer relações entre ideias, proposições e conceitos já existentes na estrutura cognitiva e aqueles contidos no material de aprendizagem”. Assim, o processo de confecção das esteiras e cestos poderia ser utilizado, no ensino da matemática, como organizadores prévios, visto que os organizadores prévios são apresentados com “a função principal de servir de ponte entre o que o aprendiz já sabe e o que ele deve saber, a fim de que o material possa ser aprendido de forma significativa.” (MOREIRA e MASINI, 2006, p.21). No contexto do ensino da matemática desenvolvido na escola indígena, basicamente, estratégia advogada por Ausubel (1968, p.148), para deliberadamente manipular a estrutura cognitiva poderia ser a dos organizadores prévios, “materiais introdutórios apresentados antes do material de aprendizagem em si mesmo, em um nível mais alto de abstração, generalidade e inclusividade”. Assim, os trançados e seu processo de confecção poderiam se bem direcionados, possibilitar a ligação entre as ideias contidas na estrutura cognitiva dos estudantes e as novas ideias matemáticas que estão sendo ensinadas na escola, pois a interpretação do pensamento direcionador do processo de confecção dos trançados sofre interferência e é influenciado pelas relações socioculturais desenvolvidas pelos sujeitos no meio em que estão inseridos e, no qual se dá essa construção, gerando formas específicas de ensinar e aprender que, certamente, se refletem na aprendizagem escolar de estudantes indígenas. Pois, é válido lembrar que: Junqueira&Marin Editores Livro 3 - p.004696 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 8 Se professor e alunos defrontam-se com sentenças, regras e símbolos matemáticos sem que nenhum deles consiga dar sentido e significado a tal simbologia, então a escola continua a negar ao aluno – especialmente àquele que frequenta a escola pública – uma das formas essenciais de ler, interpretar e explicar o mundo (MOYSÉS, 1997, p.67). Assim, no sentido de sua possibilidade, criação e transformação é que se aponta a existência de um pensamento matemático no processo de confecção dos trançados, possível de ser ressignificado no contexto da educação matemática na escola indígena Ticuna, pois a forma como as tecedoras mobilizam a atenção, a percepção, a memória e a linguagem para organizar, comparar, integrar, armazenar e comunicar informações captadas do meio indica uma forma particular de desencadear aprendizagem, inclusive, matemática que não pode ser ignorada no contexto escolar e precisa ser conhecida e reconhecida pelos professores que atuam nesse contexto. CONSIDERAÇÕES FINAIS Certamente na incorporação de conhecimentos a vivência social antecede a escolar, por isso ao se pensar formas de ensinar não se pode deixar de lado as formas de viver e aprender da sociedade na qual a escola está inserida. Nesse sentido, as práticas docentes efetivadas na escola indígena não podem continuar a margem das discussões educacionais, principalmente no tocante à matemática. O caráter multicultural da escola indígena é inegável, pois cada etnia tem sua própria cultura o que inviabiliza pensar numa didática específica para cada povo, porém não se pode enganar acreditando que uma única didática seja eficiente e eficaz para todos os contextos escolares, uma vez que, os estudantes trazem consigo um repertório matemático rico em experiências decorrentes dos saberes construídos na vida em sociedade. Assim sendo, os contratos pedagógicos efetivados na escola, e em particular na aula de matemática, devem considerar a relação aluno – cotidiano e sua influência na organização do pensamento matemático e, aproveitar-se desta, para sistematizar as formas de ensino no sentido de torná-las mais significativas para quem está aprendendo. No contexto da escola Ticuna tem-se, entre outros aspectos, o processo de confecção de trançados de cestos e esteiras que apresentam potencial matemático para uma exploração pedagógica de vários conteúdos propostos no currículo escolar, porém é necessário que o professor conheça esse potencial e tantos outros presentes nessa cultura. Junqueira&Marin Editores Livro 3 - p.004697 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 9 REFERÊNCIAS BRASIL. Referencial Curricular Nacional para as Escolas Indígenas. Matemática. Ministério da Educação. Secretaria de Educação Fundamental. Brasília: MEC/SEF, 2002. AUSUBEL, D. P. Educational psychology: a cognitive view. New York, Holt, Rinehart and Winston, 1968. D’AMORE, B. Epistemologia, Didática da Matemática e Práticas de Ensino. Bolema. Boletim de Educação Matemática. Vol. 20, n° 28, pp 179-205, 2007. GUY, B. Os diferentes papéis do professor. In: PARRA, Cecília; SAIZ, Irma (Org). Didática da Matemática: Reflexões Psicopedagógicas. Porto Alegre: Artmed, 1996. LEONTIEV, A. [et al]. PSICOLOGIA E PEDAGOGIA: bases psicológicas da aprendizagem e do desenvolvimento. Tradução: Rubens Eduardo Frias. São Paulo: Centauro, 2005. MOREIRA, M. A.; MASINI E. F. S. Aprendizagem Significativa: A Teoria de David Ausubel. São Paulo: Centauro, 2006. MOREIRA, M. A., CABALLERO, M. C. e RODRÍGUEZ, M. L. Aprendizagem Significativa: um Conceito Subjacente. Actas del Encuentro Internacional sobre el Aprendizaje Significativo. Burgos, España. pp. 19-44, 1997. MOYSÉS, L. Aplicações de Vygotsky à educação matemática. Campinas, SP: Papirus, 1997. PAIS, L. C. Ensinar e aprender matemática. Belo Horizonte: Autêntica, 2006. VYGOTSKY, L. S. et. al. Linguagem, desenvolvimento e aprendizagem. São Paulo: Ícone, 1988. FIGURAS Figura 1: A matemática da escola Figura 2: A matemática fora da escola. Junqueira&Marin Editores Livro 3 - p.004698 XVI ENDIPE - Encontro Nacional de Didática e Práticas de Ensino - UNICAMP - Campinas - 2012 10 Figura 4: A matemática fora da escola. Figura 3: A matemática da escola. Figura 5: Idéia de ângulos retos no princípio de uma esteira circular. Fonte: Arquivo pessoal. Figura 7: O início da trama de uma esteira circular feita de tucum. Fonte: Arquivo pessoal. Figura 6: Subdivisão dos quatro ângulos iniciais. Fonte: Arquivo pessoal. Figura 8: Desenvolvimento da trama/ presença de trançado enlaçado. Fonte: Arquivo pessoal Junqueira&Marin Editores Livro 3 - p.004699