Ciclo trigonométrico com os arcos notáveis – de 0º a 360º 1. Múltiplos de 30º: 0º, 30º, 60º, 90º, 120º, 150º, 180º, 210º, 240º, 270º, 300º, 330º e 360º; 2. Múltiplos de 60º: 0º, 60º, 120º, 180º, 240º, 300º e 360º; 3. Múltiplos de 45º: 0º, 45º, 90º, 135º, 180º, 225º, 270º, 315º e 360º. Lembre-se: O raio da circunferência trigonométrica é 1 (por convenção). Você deverá completar a tabela abaixo: Grau Radiano 0º 0 Seno 0 Co-seno 1 Tangente 30º 45º 60º 90º 120º 135º 150º 180º 210º 225º 240º 270º 300º 315º 330º 360º π 2π 4 −1 2 − 3 0 2 3 ∃ Obs: Para calcular a tangente, basta dividir o seno pelo co-seno – assim: tg ( = 1 O símbolo ∃ quer dizer “não existe”. Ou seja, não existe a tangente de 90º, etc. ∃1 sen ( . cos ( 3 3 sen 60º Exemplo: tg 60º = = 2 = = 3 1 cos 60º 1 2 Funções trigonométricas Seno de um arco: Associando cada nº real x a um arco p AP da circunferência trigonométrica, com origem no ponto A(0,1) e extremidade em um ponto P tal que med( p AP ) = x rad, dizemos que o seno do arco x é a ordenada OP1 do ponto P. Função seno: É a função f: R → R que, a cada número real x, associa o seno desse número: f: RÆ R x Æ y = f(x) = sen x (leia-se: f de x é igual a seno de x) O domínio dessa função é o conjunto \ , e a imagem é Im = [-1, 1]. Sinal da função seno: Como o seno de x é a ordenada do pontoextremidade do arco, A função • • y = sen x é positiva no 1º e 2º quadrantes; e y = sen x é negativa no 3º e 4º quadrantes. Exercício 1: Calcule os valores de: sen 0, sen π 2 , sen π , sen 3π e sen 2π . (Veja a figura a seguir) 2 Exercício 2: Determine os sinais de: sen 30º, sen 130º, sen 220° e sen 330º. Gráfico da função seno (y = sen x) Para se construir o gráfico da função seno, você deve localizar inicialmente, na circunferência trigonométrica, alguns arcos e determinar o valor dos seus senos. Marcando esses valores no Plano cartesiano, vamos construir o gráfico da função y = sen x. p AP da circunferência trigonométrica, com origem no ponto A(0,1) e extremidade em um ponto P tal que med( p AP ) = x rad, dizemos que o co-seno do arco x é a abscissa OP2 do ponto P. Co-seno de um arco: Associando cada nº real x a um arco Função co-seno: É a função f: ℜ → ℜ que, a cada número real x, associa o co-seno desse número: f: \Æ \ x 6y = f(x) = cos x (leia-se: f de x é igual a co-seno de x) O domínio dessa função é o conjunto ℜ , e a imagem é Im = [-1, 1]. Sinal da função co-seno: Como o seno de x é a ordenada do ponto-extremidade do arco, a função • • y = cos x é positiva no 1º e 4º quadrantes; e y = cos x é negativa no 2º e 3º quadrantes. Ex. 3) Calcule os valores de: cos 0, cos π 2 , cos π , cos 3π e cos 2π . 2 Ex. 4) Determine os sinais de: cos 30º, cos 120º, cos 210º, cos 300º e cos 900º. Veja a figura abaixo, em que está resolvido o cos 900º. Ex.5) Calcule o valor da expressão cos π 3 + cos 2π + cos 2π . 3 Gráfico da função cos-seno (y = cos x) Para construir o gráfico da função co-seno, nós devemos, inicialmente, localizar na circunferência trigonométrica, alguns arcos e, em seguida, determinar o valor do seu co-seno. Marcando esses valores no plano, construímos o gráfico da função y = cos x. É fácil ver que os valores do 1º quadrante são simétricos em relação aos do 4° quadrante, e os valores do 2º quadrante são simétricos aos do 3º. Exercício 6) Esboce os gráficos das funções seno de x e co-seno de x (y = sen x e y = cos x). Ex.7) Dê o valor de: Ex.8) Calcule o valor de: Ex.9) Dê o valor de: Ex. 9) Trace os gráficos de: a) y = cos 2x b) y = cos x/2 c) y = sen 2x d) y = sen x/2