Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores. É uma função cujo domínio são os valores da variável (x1, x2, ...) e cuja imagem são as probabilidades (p1, p2, ...) da variável assumir cada valor do domínio. O conjunto imagem deste tipo de função está sempre restrito ao intervalo entre 0 e 1. Uma distribuição de probabilidade pode ser discreta ou contínua. É comum o uso de funções que se ajustem à distribuição de probabilidade. Distribuições de Probabilidades para V. A Discretas Distribuição Uniforme Discreta Distribuição de Bernoulli Distribuição Binomial Distribuição de Poisson Distribuição Geométrica Distribuição Uniforme Discreta Distribuição de Bernoulli O que as perguntas abaixo têm em comum? – Diminuirão os casos de dengue no próximo ano? – Haverá uma alta do trigo este ano? – Uma moeda lançada vai dar coroa? O tipo de resposta: - Sim ou não. Distribuição de Bernoulli Distribuição Binomial Considere agora as seguintes perguntas: – Quantas vezes vão ocorrer casos de dengue no próximo ano? – Quantas vezes vai haver uma alta do trigo nos próximos 20 anos? – Se lançarmos uma moeda 5 vezes, quantas vezes teremos cara? Muitas vezes, não queremos saber apenas se algo ocorre ou não. Queremos saber quantas vezes ela ocorre. Distribuição Binomial A distribuição binomial resolve problemas de contagem respondendo perguntas do tipo “quantos” em experimentos onde: Há dois resultados possíveis, A probabilidade de sucesso é constante e os eventos são independentes. Distribuição Binomial Distribuição de Poisson A diferença entre a distribuição Binomial e a de Poisson é que a binomial tem um número máximo possível de ocorrências e a de Poisson não tem. EXEMPLOS: Se lançarmos uma moeda 3 vezes, qual é o número máximo de coroas que se poderá obter? Quantas pessoas estarão na fila no horário de pico? Quantos acidentes vão acontecer este ano? Uma pergunta como “quantas pessoas estarão na fila no horário de pico” não pode ser respondida por uma distribuição binomial. Distribuição de Poisson Nestes exemplos, interessa contar quantas vezes alguma coisa acontece em um espaço contínuo de tempo. Quando isso acontece, podemos usar a distribuição de Poisson Distribuição Geométrica Repetição de um experimento com distribuição de Bernoulli (sucesso ou fracasso) até a obtenção do primeiro sucesso. Distribuições de Probabilidades para V. A Contínuas Distribuição Uniforme Contínua Distribuição Normal Distribuição Χ2 (Qui Quadrado) Distribuição t de Student Distribuição Exponencial Distribuição Normal Distribuição Normal Distribuição Normal Distribuição Normal - Exemplo A área sob a curva entre quaisquer dois valores de x1 e x2 dependerão de µ e σ