Estudante: 8º Ano/Turma: Educador: Flávia Lemos C. Curricular: Matemática ALTURA Altura de um triângulo é o segmento de reta que une um vértice ao lado oposto (ou ao seu prolongamento), formando um ângulo de 90º com esse lado. Todo triângulo possui três alturas, que se encontra em um único ponto denominado ortocentro. Observe as alturas e o ortocentro nos diferentes triângulos Triângulo acutângulo Triângulo obtusângulo Triângulo Retângulo Note que, nesse caso, duas das alturas coincidem com os lados Note que, nesse caso, o ortocentro Note que, nesse caso, o 𝐴𝐶 e 𝐴𝐵 , e o ortocentro coincide pertence ao triângulo e não coincide ortocentro não pertence ao com o vértice A. com nenhum de seus vértices. triângulo. MEDIANA Mediana de um triângulo é o segmento de reta que une um vértice ao ponto médio do lado oposto. Todo triângulo possui três medianas, que se encontra em um único ponto denominado baricentro. BISSETRIZ Bissetriz de um triângulo é o segmento de reta que une um vértice ao lado oposto, dividindo o ângulo desse vértice em dois ângulos de mesma medida. Todo triângulo possui três bissetrizes, que se encontra em um único ponto denominado incentro. Observação Em geral, as alturas, as medianas e as bissetrizes de um triângulo não coincidem. Porém, em alguns triângulos especiais, pode haver coincidência entre esses três elementos. TRIÂNGULO EQUILÁTERO 1. Triângulo equilátero tem os três lados com a mesma medida. 2. Em todo triângulo equilátero os três ângulos internos são congruentes, medindo 60° cada um. 3. No triângulo equilátero o baricentro, o incentro e o ortocentro são pontos coincidentes. TRIÂNGULO ISÓSCELES No triângulo isósceles, alguns elementos recebem nomes especiais: O lado com medida diferente é chamado de base. Os ângulos adjacentes à base são chamados ângulos da base. O ângulo oposto à base é chamado ângulo do vértice. Propriedades: 1º. Em todo triângulo isósceles, a mediana, a altura relativas à base e a bissetriz do ângulo do vértice coincidem. 2ª. Em todo triângulo isósceles os ângulos da base são congruentes. QUESTÕES Questão 01 Em cada um dos triângulos seguintes, classifique o segmento 𝐴𝑃 como mediana, altura ou bissetriz. Questão 02 Sendo 𝐴𝑀 a mediana do ∆𝐴𝐵𝐶, calcule o seu perímetro. Questão 03 Sendo 𝐴𝐻 a altura do ∆𝐴𝐵𝐶, determine as medidas x e y. Questão 04 No ∆𝑀𝑁𝑃, 𝑀𝐴 é a bissetriz relativa ao lado 𝑃𝑁. Qual a medida de 𝑃𝑀𝐴? Questão 05 Na figura, 𝐴𝐻 é uma altura, e 𝐵𝐼 é outro altura. Determine as medidas a, b e c indicadas. Questão 06 No ∆𝐴𝐵𝐶 abaixo, 𝑚𝑒𝑑 𝐵 = 60° e 𝑚𝑒𝑑 𝐶 = 40°. Sabendo que 𝐵𝐷 e 𝐶𝐸 são as bissetrizes relativas aos lados 𝐴𝐶 e 𝐴𝐵 , respectivamente, determine as medidas x e y. Questão 07 No ∆𝑀𝑃𝑄, 𝑀𝑋 e 𝑃𝑌 são bissetrizes. Calcule as medidas a, b e c. Questão 08 No ∆𝐴𝐵𝐶, o ângulo 𝐴 mede 80°. Sabendo que 𝐴𝑀 é, ao mesmo tempo, altura e bissetriz, determine as medidas de 𝐵 e 𝐶 . Questão 09 Na figura, 𝐴𝐷 é bissetriz relativa ao ângulo 𝐴, e 𝐴𝐻 é altura relativa ao lado 𝐵𝐶 . Determine as medidas a, b e c indicadas. Questão 10 Em um ∆𝐴𝐵𝐶, o ângulo 𝐵 mede 60º, e o ângulo 𝐶 mede 20º. Calcule a medida do ângulo formado pela altura relativa ao lado 𝐵𝐶 e a bissetriz do ângulo 𝐴. Questão 11 Na figura, 𝐴𝐻 é altura, e 𝐴𝑆 é a bissetriz. Determine o valor de x. Questão 12 No ∆𝐴𝐵𝐶, 𝐴𝐻 é a altura relativa ao lado 𝐵𝐶 . Quais as medidas de x e y?