Nome: .................................................................. Turma: ........... Data: ___/___/_____ Ensino Médio 2010 Disciplina: Matemática – 1º ano Professor Magnus PROGRESSÃO ARITMÉTICA – FOLHA 80 1. Determine x para que a seqüência represente uma progressão aritmética. a) (3x – 1, x + 3, x + 9) b) (2x + 2, x – 3, 4x) c) (1 – 3x, x – 2, 2x + 1) 2. Determine o valor de x para que os números e log 2 8 , log 2 ( x 9) log 2 ( x 7) estejam, nessa ordem, em PA. 3. Determinar quantos múltiplos de 5 existem entre 21 e 623. 4. Determinar o primeiro termo e a razão de uma PA em que o décimo termo é 130 e o décimo nono termo é 220. 5. Determinar o primeiro termo e a razão de uma PA em que a2 a6 20 e a4 a9 35 . 6. Determinar o primeiro termo e a razão de uma PA em que a1 3a2 5 e 4a3 2a6 8 . 7. Ache 3 números em PA sabendo que sua soma é 12 e seu produto é 66. 8. (PUCRS) As medidas dos ângulos internos de um triângulo estão em PA de razão 20o. O maior ângulo desse triângulo mede: a) 30o b) 40o c) 500 d) 80o e) 60o 9. (UFPEL) As medidas dos lados de um triângulo são expressas por x 1 , 2 x e x 2 5 e estão em PA, nessa ordem. O perímetro desse triângulo é: a) 8 b) 12 c) 15 d) 24 e) 33 10. (UFPA) Numa progressão aritmética, temos a7 5 e a15 61 . Então, a razão dessa PA pertence ao intervalo: a) [8, 10] b) [6, 8[ c) [4, 6[ d) [2, 4[ e) [0, 2[ 11. (UCS) O número de múltiplos de 3 entre 100 e 400 é: a) 100 b) 110 c) 120 d) 130 e) 140 12. (PUCRS) Se 2 + 5 + 8 + ... + x = 1190, então x vale: a) 86 b) 83 c) 80 d) 79 e) 76 13. (UCS) Qual o valor de x para que a seqüência (2x, x + 1,3x) seja uma PA? a) 1/3 b) 2/3 c) 3 d) 1/2 e) 2 14. (PUCRS) Colocando 120 objetos em linhas de modo que na primeira linha haja um objeto e, daí até a última linha um objeto a mais por linha, teremos um número total de linhas igual a: a) 11 b) 13 c) 15 d) 16 e) 19 15. (UFRGS) Em uma progressão aritmética em que o primeiro termo é 23 e a razão é -6, a posição ocupada pelo elemento -13 é: a) 8ª b) 7ª c) 6ª d) 5ª e) 4ª