AVAGAEMINHA.COM.BR - GABARITO DE QUESTÕES Aula: VETORES Curso: VETORES Questões 1. (G1) Observe a figura a seguir e determine quais as flechas que: a) tem a mesma direção. b) tem o mesmo sentido. c) tem o mesmo comprimento. 2. (Ufc) Analisando a disposição dos vetores BA, EA, CB, CD e DE, conforme figura a seguir, assinale a alternativa que contém a relação vetorial correta. a) CB + CD + DE = BA + EA b) BA + EA + CB = DE + CD c) EA - DE + CB = BA + CD d) EA - CB + DE = BA - CD 3. (Uepg 2011) O estudo da física em duas e três dimensões requer o uso de uma ferramenta matemática conveniente e poderosa conhecida como vetor. Sobre os vetores, assinale o que for correto. 01) A direção de um vetor é dada pelo ângulo que ele forma com um eixo de referência qualquer dado. 02) O comprimento do segmento de reta orientado que representa o vetor é proporcional ao seu módulo. 04) Dois vetores são iguais somente se seus módulos correspondentes forem iguais. 08) O módulo do vetor depende de sua direção e nunca é negativo. 16) Suporte de um vetor é a reta sobre a qual ele atua. 4. (Fatec) Dados os vetores A, B e C, representados na figura em que cada quadrícula apresenta lado correspondente a uma unidade de medida, é correto afirmar que a resultante dos vetores tem módulo: a) 1 b) 2 c) 3 d) 4 e) 6 5. (G1 - cftce) Dados os vetores "a", "b", "c", "d" e "e" a seguir representados, obtenha o módulo do vetor soma: R = a + b + c +d+e a) zero b) c) 1 d) 2 e) 6. (Puc-rio) Os ponteiros de hora e minuto de um relógio suíço têm, respectivamente, 1 cm e 2 cm. Supondo que cada ponteiro do relógio é um vetor que sai do centro do relógio e aponta na direção dos números na extremidade do relógio, determine o vetor resultante da soma dos dois vetores correspondentes aos ponteiros de hora e minuto quando o relógio marca 6 horas. a) O vetor tem módulo 1 cm e aponta na direção do número 12 do relógio. b) O vetor tem módulo 2 cm e aponta na direção do número 12 do relógio. c) O vetor tem módulo 1 cm e aponta na direção do número 6 do relógio. d) O vetor tem módulo 2 cm e aponta na direção do número 6 do relógio. e) O vetor tem módulo 1,5 cm e aponta na direção do número 6 do relógio. 7. (Puccamp) Num bairro, onde todos os quarteirões são quadrados e as ruas paralelas distam 100 m uma da outra, um transeunte faz o percurso de P a Q pela trajetória representada no esquema a seguir. O deslocamento vetorial desse transeunte tem módulo, em metros, igual a a) 300 b) 350 c) 400 d) 500 8. (Ufc) A figura adiante mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão mede 100 m. Você caminha pelas ruas a partir de sua casa, na esquina A, até a casa de sua avó, na esquina B. Dali segue até sua escola, situada na esquina C. A menor distância que você caminha e a distância em linha reta entre sua casa e a escola são, respectivamente: a) 1800 m e 1400 m. b) 1600 m e 1200 m. c) 1400 m e 1000 m. d) 1200 m e 800 m. 9. (Unifesp) Na figura, são dados os vetores , e . Sendo u a unidade de medida do módulo desses vetores, pode-se afirmar que o vetor módulo a) 2u, e sua orientação é vertical, para cima. = - + tem b) 2u, e sua orientação é vertical, para baixo. c) 4u, e sua orientação é horizontal, para a direita. d) ( )u, e sua orientação forma 45° com a horizontal, no sentido horário. e) ( )u, e sua orientação forma 45° com a horizontal, no sentido anti-horário. 10. (Ufal) A localização de um lago, em relação a uma caverna pré-histórica, exigia que se caminhasse 200 m numa certa direção e, a seguir, 480 m numa direção perpendicular à primeira. A distância em linha reta, da caverna ao lago era, em metros, a) 680 b) 600 c) 540 d) 520 e) 500 11. (Ufc) Na figura a seguir, onde o reticulado forma quadrados de lados â„“=0,5cm, estão desenhados 10 vetores contidos no plano xy. O módulo da soma de todos esses vetores é, em centímetros: a) 0,0. b) 0,5. c) 1,0. d) 1,5. e)2,0 12. (Pucpr) Um ônibus percorre em 30 minutos as ruas de um bairro, de A até B, como mostra a figura: Considerando a distância entre duas ruas paralelas consecutivas igual a 100 m, analise as afirmações: I. A velocidade vetorial média nesse percurso tem módulo 1 km/h. II. O ônibus percorre 1500 m entre os pontos A e B. III. O módulo do vetor deslocamento é 500 m. IV. A velocidade vetorial média do ônibus entre A e B tem módulo 3 km/h. Estão corretas: a) I e III. b) I e IV. c) III e IV. d) I e II. e) II e III. 13. (Ufal) Num estacionamento, um coelho se desloca, em sequência, 12m para o Oeste, 8m para o Norte e 6m para o Leste. O deslocamento resultante tem módulo a) 26m b) 14m c) 12m d) 10m e) 2m 14. (Ufpb) Um cidadão está à procura de uma festa. Ele parte de uma praça, com a informação de que o endereço procurado estaria situado a 2km ao norte. Após chegar ao referido local, ele recebe nova informação de que deveria se deslocar 4km para o leste. Não encontrando ainda o endereço, o cidadão pede informação a outra pessoa, que diz estar a festa acontecendo a 5km ao sul daquele ponto. Seguindo essa dica, ele finalmente chega ao evento. Na situação descrita, o módulo do vetor deslocamento do cidadão, da praça até o destino final, é: a) 11km b) 7km c) 5km d) 4km e) 3km 15. (Ueg) Considerando que os vetores A, B e C satisfazem à equação vetorial A + B = C e seus módulos estão relacionados pela equação escalar A + B = C, responda ao que se pede. a) Como está orientado o vetor A em relação ao vetor B? Justifique o seu raciocínio. b) Considere agora que a relação entre os seus módulos seja dada por A2 + B2 = C2. Qual seria a nova orientação do vetor B em relação ao vetor A? Justifique seu raciocínio. 16. (G1 - cftce) Uma partícula desloca-se sobre a trajetória formada pelas setas que possuem o mesmo comprimento L. A razão entre a velocidade escalar média e a velocidade vetorial média é: a) b) c) 1 d) e) 2 17. (Mackenzie) Com seis vetores de módulo iguais a 8u, construiu-se o hexágono regular a seguir. O módulo do vetor resultante desses 6 vetores é: a) 40 u b) 32 u c) 24 u d) 16 u e) zero 18. (G1 - cftce) Os deslocamentos A e B da figura formam um ângulo de 60° e possuem módulos iguais a 8,0 m. Calcule os módulos dos deslocamentos A + B, A - B e B - A e desenhe-os na figura. 19. (G1 - cftce) Para se posicionar frente ao gol adversário, um jogador efetua deslocamentos rápidos e sucessivos em linha reta, com módulos de 1,8 m e 2,4 m, deixando completamente para trás a defesa oponente. Para que o deslocamento resultante da bola seja de 3,0m, o ângulo entre estes deslocamentos deve ser de: a) 0° b) 30° c) 60° d) 90° e) 120° 20. (Uece 2010) Um barco pode viajar a uma velocidade de 11 km/h em um lago em que a água está parada. Em um rio, o barco pode manter a mesma velocidade com relação à água. Se esse barco viaja no Rio São Francisco, cuja velocidade da água, em relação à margem, assume-se 0,83 m/s, qual é sua velocidade aproximada em relação a uma árvore plantada na beira do rio quando seu movimento é no sentido da correnteza e contra a correnteza, respectivamente? a) 14 km/h e 8 km/h. b) 10,2 m/s e 11,8 m/s. c) 8 km/h e 14 km/h. d) 11,8 m/s e 10,2 m/s 21. (Ufms) Um carro move-se com velocidade constante de 60 km/h. Começa a chover e o motorista observa que as gotas de água da chuva caem formando um ângulo de 30° com a vertical. Considerando que, em relação à Terra, as gotas caem verticalmente, qual a velocidade em que as gotas de água caem em relação ao carro? a) 30 km/h. b) 60 km/h. c) 120 km/h. d) 30 km/h. e) nenhuma das respostas anteriores. 22. (Ufal 2010) De dentro de um automóvel em movimento retilíneo uniforme, numa estrada horizontal, um estudante olha pela janela lateral e observa a chuva caindo, fazendo um ângulo com a direção vertical, com sen = 0,8 e cos = 0,6. Para uma pessoa parada na estrada, a chuva cai verticalmente, com velocidade constante de módulo v. Se o velocímetro do automóvel marca 80,0 km/h, pode-se concluir que o valor de v é igual a: a) 48,0 km/h b) 60,0 km/h c) 64,0 km/h d) 80,0 km/h e) 106,7 km/h 23. (Ufscar) O submarino navegava com velocidade constante, nivelado a 150 m de profundidade, quando seu capitão decide levar lentamente a embarcação à tona, sem contudo abandonar o movimento à frente. Comunica a intenção ao timoneiro, que procede ao esvaziamento dos tanques de lastro, controlando-os de tal modo que a velocidade de subida da nave fosse constante. Se a velocidade horizontal antes da manobra era de 18,0 km/h e foi mantida, supondo que a subida tenha se dado com velocidade constante de 0,9 km/h, o deslocamento horizontal que a nave realizou, do momento em que o timoneiro iniciou a operação até o instante em que a nau chegou à superfície foi, em m, de a) 4 800. b) 3 000. c) 2 500. d) 1 600. e) 1 200. 24. (Uerj) Duas partículas, X e Y, em movimento retilíneo uniforme, têm velocidades respectivamente iguais a 0,2 km/s e 0,1 km/s. Em um certo instante t1, X está na posição A e Y na posição B, sendo a distância entre ambas de 10 km. As direções e os sentidos dos movimentos das partículas são indicados pelos segmentos orientados AB e BC, e o ângulo A C mede 60°, conforme o esquema. Sabendo-se que a distância mínima entre X e Y vai ocorrer em um instante t2, o valor inteiro mais próximo de t2 - t1, em segundos, equivale a: a) 24 b) 36 c) 50 d) 72 25. (Ufpe) Um disco de plástico é lançado com velocidade inicial v0 = 14 m/s fazendo um ângulo de 30° com a borda A de uma mesa horizontal, como mostrado na figura. Após o lançamento, o disco desliza sem atrito e segue uma trajetória em zigue-zague, colidindo com as bordas B e D. Considerando que todas as colisões são perfeitamente elásticas, calcule o intervalo de tempo, em unidades de 10-2 segundos, para o disco atingir a borda C pela primeira vez.