Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori Questões Q9.1 Quando uma fíta de vídeo ou de áudio é rebobinada, por que a velocidade com que ela se desenrola é mais rápida no final do rebobinamento? Q9.2 Um corpo que gira em torno de um eixo fixo deve ser perfeitamente rígido para que todos os pontos do corpo girem com a mesma velocidade angular e com a mesma aceleração angular? Explique. 1 Q9.3 Qual é a diferença entre a aceleração tangencial e a aceleração radial de um ponto em um corpo que gira? Q9.4 Na Figura 9.11, todos os pontos da corrente possuem a mesma velocidade escalar linear v. O módulo da aceleração linear a também é o mesmo para todos os pontos ao longo da corrente? Qual é a relação existente entre a aceleração angular das duas rodas dentadas? Explique. Q9.5 Na Figura 9.11, qual é a relação entre a aceleração radial de um ponto sobre o dente de uma das rodas e a aceleração radial de um ponto sobre o dente da outra roda dentada? Explique o raciocínio que você usou para responder a essa pergunta. Q9.6 Um volante gira com velocidade angular constante. Um ponto de sua periferia possui aceleração tangencial? Possui aceleração radial? Essas acelerações possuem um módulo constante? Possuem direção constante? Explique o raciocínio usado em cada caso. Q9.7 Qual é o objetivo do ciclo de rotação da máquina de lavar roupa? Explique em termos dos componentes da aceleração. Q9.8 Embora a velocidade angular e a aceleração angular possam ser tratadas como vetores, o deslocamento angular θ, apesar de possuir módulo e sentido, não é considerado um vetor. Isso porque o ângulo θ1 não segue as regras da lei comutativa da adição vetorial (Equação (l .4)). Prove essa afirmação do seguinte modo. Coloque um dicionário apoiado horizontalmente sobre a mesa à sua frente, com a parte superior voltada para você de modo que você possa ler o título do dicionário. Gire a aresta mais afastada de você a 90° em torno de um eixo horizontal. Chame esse deslocamento angular de 0p A seguir gire a aresta esquerda 90° se aproximando de você em torno de um eixo vertical. Chame esse deslocamento angular de θ1. A lombada do dicionário deve ficar de frente para você, c você poderá ler as palavras impressas na lombada. Agora repita as duas rotações de 90°, porém em ordem inversa. Você obtém o mesmo resultado ou não? Ou seja, θ2 + θ1 é igual a θ2 + θ1,? Agora repita a experiência porém com um ângulo de l ° cm vez de 90°. Você acha que um deslocamento infinitesimal dê obedece à lei comutativa da adição e, portanto, o qualifica como um vetor? Caso sua resposta seja afirmativa, como você relaciona a direção e o sentido de dê com a direção e o sentido de tu? Q9.9 Você consegue imaginar um corpo que possua o mesmo momento de inércia para todos os eixos possíveis? Em caso afirmativo, forneça um exemplo e, se sua resposta for negativa. explique por que isso seria impossível. Você pode imaginar um corpo que possua o mesmo momento de inércia em relação a todos os eixos passando em um ponto específico? Caso isso seja possível, forneça um exemplo e diga onde o ponto deve estar localizado. Q9.10 Para maximizar o momento de inércia de um volante e minimizar seu peso, qual deve ser sua forma e como sua massa deve ser distribuída? Explique. Q9.11 Como você poderia determinar experimentalmente o momento de inércia de um corpo de forma irregular em relação a um dado eixo? Q9.12 Um corpo cilíndrico possui massa M e raio R. Pode sua massa ser distribuída ao longo do corpo de tal modo que seu momento de inércia em relação ao seu eixo de simetria seja maior do que AW2? Explique. Q9.13 Explique como a parte (b) da Tabela 9.2 poderia se usada para deduzir o resultado indicado na parte (d). Q9.14 O momento de inércia I de um corpo rígido em relação a um eixo que passa em seu centro de massa é Icm. Existe algum eixo paralelo a esse eixo para o qual I seja menor do que Icm? Explique. Q9.15 Para que as relações de / fornecidas nas partes (a) e (b) da Tabela 9.2 sejam válidas, é necessário que a barra tenha uma seção rota circular? Existe alguma restrição sobre a área da seção reta para que essas relações sejam válidas? Explique. Q9.16 Na parte (d) da Tabela 9.2, a espessura da placa deve ser menor que a para que a expressão de I possa ser aplicada. Porém, na parte (c), a expressão se aplica para qualquer espessura da placa. Explique. Q9.17 Na Figura 5.26a use as expressões 1 1 K m v2 e K I 2 para calcular a energia 2 2 cinética da caixa (considerando-a uma partícula única). Compare os dois resultados obtidos. Explique esses resultados. Q9.18 A Equação (9.18) mostra que devemos usar ycm para calcular U de um corpo com uma distribuição de massas contínua. Porém no Exemplo 9.9 (Seção 9.5). y não foi medido em relação ao centro de massa mas, sim, a partir do ponto inferior da massa pendurada. Isso está errado? Explique. Q9.19 Qualquer unidade de ângulo — radiano, grau ou revolução — pode ser usada em alguma equação do Capítulo 9, porém somente ângulos em radianos podem ser usados em outras. Identifique as equações para as quais o uso do ângulo em radianos é obrigatório e aquelas para as quais você pode usar qualquer unidade de ângulo, e diga o raciocínio que foi usado por você em cada caso. Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori momento em que a velocidade angular se anulou? (d) Qual era a velocidade angular do eixo do motor para t = 0, quando a corrente foi invertida? (e) Calcule a velocidade angular média no intervalo 9.1 (a) Calcule o ângulo em radianos subtendido por de tempo desde t = 0 até o instante calculado no item (a). um arco de 1.50 m de comprimento ao longo de uma circunferência de raio igual a 2.50 m. Qual é esse ângulo em 9.7 O ângulo descrito por uma roda de bicicleta graus? (b) Um arco de comprimento igual a 14.0 cm subtende girando é dado por t a b t 2 c t 3 onde a, b e c são um ângulo de 128° em um círculo. Qual é o raio da circunferência desse círculo? (c) E de 0.700 rad o ângulo constante reais são constantes positivas tais que se t for dado entre dois raios de um círculo de raio igual a 1.50 m. Qual é o em segundos, θ deve ser medido em radianos. (a) Calcule a aceleração angular da roda em função comprimento do arco sobre a circunferência desse círculo do tempo. compreendido entre esses dois raios? (b) Em que instante a velocidade angular instantânea da roda não está variando? 9.2 A hélice de um avião gira a 1900 rev/min. (a) Calcule a velocidade angular da hélice em rad/s. (b) Quantos SEÇÃO 9.3 segundos a hélice leva para girar a 35°? ROTAÇÃO COM ACELERAÇÃO ANGULAR CONSTANTE 9.3 Considere o volante dos Exemplos 9.1 e 9.2 (Seção 9.2). 9.8 A roda de uma bicicleta possui uma velocidade (a) Calcule a aceleração angular instantânea para t = angular de 1.50 rad/s. 3.5 s. Explique porque seu resultado é igual à aceleração (a) Se sua aceleração angular é constante e igual a angular média para o intervalo entre 2,0 s e 5.0 s. 0.300 rad/s², qual é sua velocidade angular para t = 2.50 s? (b) Calcule a velocidade angular instantânea para t = (b) Qual foi o deslocamento angular da roda entre t = 3.5 s. Explique por que seu resultado não é igual à velocidade t = 2.50 s? angular média para o intervalo entre 2.0 s e 5.0 s, embora 3.5 s corresponda ao valor médio desse intervalo de tempo. 9.9 Um ventilador elétrico é desligado, e sua 9.4 As lâminas de um ventilador giram com velocidade angular diminui uniformemente de 500 rev/min até 200 rev/min em 4.00 s. 2 velocidade angular dada por t t , onde = (a) Ache a aceleração angular em rev/s²e o número de revoluções feitas no intervalo de 4.00 s. 5.00 rad/s e = 0.800 rad/s2. (b) Supondo que a aceleração angular calculada no (a) Calcule a aceleração angular em função do item (a) permaneça constante. durante quantos segundos a tempo, (b) Calcule a aceleração angular instantânea a para t mais a roda continuará a girar até parar? = 3.00 s e a aceleração angular média αmed para o intervalo de 9.10 (a) Deduza a Equação (9.12) combinando a tempo t = 0 até t = 3.00 s. Como essas duas grandezas podem ser comparadas? Caso elas sejam diferentes, por que são Equação (9.7) com a Equação (9.11) para eliminar t. (b) A velocidade angular da hélice de um avião diferentes? cresce de 12.0 rad/s até 16.0 rad/s quando ela sofre um 9.5 Uma criança está empurrando um carrossel. O deslocamento angular de 7.00 rad. Qual é a aceleração deslocamento angular do carrossel varia com o tempo de angularem rad/s²? SEÇÃO 9.2 VELOCIDADE ANGULAR ACELERAÇÃO ANGULAR 2 acordo com a relação t t t 3 , onde = 0.400 9.11 A lâmina rotatória de um misturador gira com rad/s e = 0.0120 rad/s . aceleração angular constante igual a 1.50 rad/s². (a) Calcule a velocidade angular do carrossel em (a) Partindo do repouso, quanto tempo ela leva para função do tempo, atingir uma velocidade angular de 36.0 rad/s? (b) Qual é o valor da velocidade angular inicial? (b) Qual o número de revoluções descritas pela (c) Calcule o valor da velocidade angular instantânea rotação da lâmina nesse intervalo de tempo? para t = 5.00 s e a velocidade angular média med para o intervalo de tempo de t = 0 até t = 5.00 s. Mostre que med 9.12 Um volante leva 4.00 s para girar através de um não é igual a média das velocidades angulares para t = 0 até t ângulo de 162 rad. Sua velocidade angular nesse instante = 5.00 s e explique a razão dessa diferença. Final é igual a 108 rad/s. Calcule (a) a velocidade angular no início desse intervalo de 9.6 Para t = 0 a corrente de um motor elétrico de 4.00 s; corrente contínua (de) é invertida, produzindo um (b) a aceleração angular constante. deslocamento angular do eixo do motor dado por 9.13 A roda de uma olaria gira com aceleração t 250 rad s t 20 rad s 2 t 2 1.50 rad s 3 t 3 . angular constante igual a 2.25 rad/s². Depois de 4.00 s, o (a) Em que instante a velocidade angular do eixo do ângulo descrito pela roda era de 60.0 rad. Qual era a motor se anula? velocidade angular da roda no início do intervalo de 4.00 s? (b) Calcule a aceleração angular no instante em que a velocidade angular do eixo do motor é igual a zero. 9.14 A lâmina de uma serra circular de diâmetro (c) Quantas revoluções foram feitas pelo eixo do igual a 0.200 m começa a girar a partir do repouso. Em 6.00 s motor desde o instante em que a corrente foi invertida até o ela se acelera com velocidade angular constante ate uma 2 Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori velocidade angular igual a 140 rad/s. Calcule a aceleração angular e o deslocamento angular total da lâmina. 3 SEÇÃO 9.4 RELAÇÕES ENTRE A CINEMÁTICA ANGULAR LINEAR CINEMÁTICA E A 9.15 Um dispositivo de segurança faz a lâmina de uma serra mecânica reduzir sua velocidade angular de um 9.19 O rotor principal de um helicóptero gira em um valor 1 ao repouso, completando 1.00 revolução. Com essa plano horizontal a 90.0 rev/min. A distância entre o eixo do mesma aceleração constante, quantas revoluções seriam rotor e a extremidade da lâmina é igual a 5.00 m. Calcule a necessárias para fazer a lâmina parar a partir de uma velocidade escalar da extremidade da lâmina através do ar se (a) o helicóptero está em repouso no solo: velocidade angular 2 sendo 2 = 3 1 ? (b) o helicóptero está subindo verticalmente a 4.00 9.16 Uma fita refletora estreita se estende do centro à m/s. periferia de uma roda. Você escurece a sala e usa uma câmara 9.20 Um CD armazena músicas em uma e uma unidade estroboscópica que emite um flash a cada 0.050 s para fotografar a roda enquanto ela gira em um configuração codificada constituída por pequenas reentrâncias sentido contrário ao dos ponteiros do relógio. Você dispara o com profundidade de 10 m. Essas reentrâncias são agrupadas estroboscópio de tal modo que o primeiro flash (t = 0) ocorre ao longo de uma trilha em forma de espiral orientada de quando a fita está na horizontal voltada para a direita com dentro para fora até a periferia do disco; o raio interno da deslocamento angular igual a zero. Para as situações descritas espiral é igual a 25.0 mm e o raio externo é igual a 58.0 mm. a seguir, faça um desenho da foto que você obterá para a À medida que o disco gira em um CD player, a trilha é exposição no intervalo de tempo para cinco flashes (para t = percorrida com uma velocidade linear constante de 1.25 m/s. (a) Qual é a velocidade angular do CD quando a 0: 0.050 s; 0.100 s: 0.150 s: e 0.200 s): faça um gráfico de θ parte mais interna da trilha esta sendo percorrida? E quando a contra t e de a contra t desde t = 0 até t = 0.200 s. (a) A velocidade angular é constante e igual a 10.0 pane mais externa está sendo percorrida? (b) O tempo máximo para a reprodução do som de rev/s. (b) A roda parte do repouso com uma aceleração um CD é igual a 74,0 min. Qual seria o comprimento total da trilha desse CD caso a espiral tosse esticada para formar uma angular de 25.0 rev/s². (c) A roda está girando a 10.0 rev/s para t = 0 e varia trilha reta? (c) Qual é a aceleração angular máxima para esse CD sua velocidade angular com uma taxa constante de -50.0 de máxima duração durante o tempo de 74.0 min? Considere rev/s². como positivo o sentido da rotação do disco. 9.17 Para t = 0, a roda de um esmeril possui 9.21 Uma roda gira com velocidade angular velocidade angular igual a 24,0 rad/s. Ela possui uma aceleração angular constante igual a 30.0 rad/s' quando um constante de 6.00 rad/s. (a) Calcule a aceleração radial de um ponto a 0.500 freio é acionado em t = 2.00 s. A partir desse instante ela gira 2 432 rad à medida que pára com uma aceleração angular m do eixo, usando a relação arad = r. (b) Ache a velocidade tangencial do ponto e calcule constante, 2 (a) Qual foi o deslocamento angular total da roda sua aceleração radial pela fórmula arad = v /r. desde t = 0 até o instante em que ela parou? 9.22 Calcule a velocidade angular necessária (em (b) Em que instante ela parou? (c) Qual foi o módulo da sua aceleração quando ela rev/min) de uma ultracentrífuga para que a aceleração radial de um ponto a 2.50 cm do eixo seja igual a 400000g (isto é, diminuía de velocidade? 400000 vezes maior do que a aceleração da gravidade). 9.18 (a) Deduza uma expressão para um movimento 9.23 Um volante de raio igual a 0.300 m parte do com aceleração angular constante que forneça θ – θ0 em repouso e se acelera com aceleração angular constante de função de de α e de t (não use 0 na equação), 2 (b) Para t = 8.0 s, uma engrenagem gira em tomo de 0.600 rad/s . Calcule o módulo da aceleração tangencial, da um eixo fixo a 4.50 rad/s. Durante o intervalo precedente de aceleração radial e da aceleração resultante de um ponto da 8.0 s ela girou através de um ângulo de 40.0 rad. Use o periferia do volante (a) no início: resultado da parte (a) para calcular a aceleração angular (b) depois de ele ter girado um ângulo de 60.0°; constante da engrenagem, (c) depois de ele ter girado um ângulo de 120.0°. (c) Qual era a velocidade angular da engrenagem para t = 0? 9.24 Um ventilador de teto cujas lâminas possuem diâmetro de 0.750 m está girando em torno de um eixo fixo com uma velocidade angular inicial igual a 0.250 rev/s. A aceleração angular é igual a 0.900 rev/s2. (a) Calcule a velocidade angular depois de 0.200 s. (b) Quantas revoluções foram feitas pela lâmina durante esse intervalo de tempo? (c) Qual é a velocidade tangencial de um ponto na extremidade da lâmina para t = 0.200 s? (d) Qual é o módulo da aceleração resultante de um ponto na extremidade da lâmina para t = 0.200 s? 9.25 Uma propaganda afirma que uma centrífuga Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori precisa somente de 0.127 m para produzir uma aceleração radial de 3000 para 5000 rev/min. Calcule o raio necessário dessa centrífuga. A afirmação da propaganda é viável? 4 SEÇÃO 9.5 ENERGIA NO MOVIMENTO DE ROTAÇÃO 9.30 Pequenos blocos, todos com a mesma massa m, 9.26 (a) Deduza uma equação para a aceleração estão presos às extremidades e ao centro de uma barra leve de comprimento igual a L. Calcule o momento de inércia do radial que inclua v e mas não inclua r. (b) Você está projetando um carrossel para o qual um sistema em relação a um eixo perpendicular à barra passando ponto da periferia possui uma aceleração radial igual a 0.500 em um ponto situado a ¼ do comprimento a partir de uma das m/s2 quando a velocidade tangencial desse ponto possui extremidades da barra. Despreze o momento de inércia da módulo igual a 2.00 m/s. Qual é a velocidade angular barra leve. necessária para se atingir esses valores? 9.31 Uma batuta consiste em um fino cilindro 9.27 Um problema de furadeira. Ao furar um metálico de massa M e comprimento L. Cada extremidade buraco com diâmetro igual a 12.7 mm na madeira, no plástico possui uma tampa de borracha de massa m e cada tampa pode ou no alumínio, o manual do fabricante recomenda uma ser tratada com precisão como uma partícula neste problema. velocidade de operação igual a 1250 rev/min. Para uma broca Calcule o momento de inércia da batuta em relação ao eixo com um diâmetro de 12.7 mm girando com uma velocidade usual de rotação (perpendicular à batuta e passando pelo seu centro). constante igual a 1250 rev/min, calcule (a) a velocidade linear máxima de qualquer ponto da 9.32 Calcule o momento de inércia em relação a cada broca; (b) a aceleração radial máxima de qualquer ponto da um dos seguintes eixos para um eixo de 0.300 cm de diâmetro, 1.50 m de comprimento e massa igual a 0.0420 kg. broca. Use as fórmulas da Tabela 9.2. (a) Em relação a um eixo perpendicular à barra e 9.28 Para t = 3.00 s, um ponto na periferia de uma roda com raio de 0.200 m possui uma velocidade tangencial passando pelo seu centro, (b) Em relação a um eixo perpendicular à barra e igual a 50.0 m/s quando a roda está freando com uma aceleração tangencial constante com módulo igual a 10.0 passando em uma de suas extremidades, (c) Em relação a um eixo longitudinal passando pelo m/s2. (a) Calcule a aceleração angular constante da roda. centro da barra. (b) Calcule as velocidades angulares para t = 3.00 s e 9.33 Quatro pequenas esferas, todas consideradas t = 0. (c) Qual foi o deslocamento angular do giro da roda massas puntiformes com massa de 0.200 kg, estão dispostas nos vértices de um quadrado de lado igual a 0.400 m e entre t = 0 e t = 3.00 s? (d) Em qual instante a aceleração radial toma-se conectadas por hastes leves (Figura 9.21). Calcule o momento de inércia do sistema em relação a um eixo igual a g? (a) perpendicular ao quadrado e passando pelo seu 9.29 Os ciclos de rotação de uma máquina de lavar centro (um eixo passando pelo ponto O na figura); (b) cortando ao meio dois lados opostos do quadrado possuem duas velocidades angulares, 423 rev/min e 640 (um eixo ao longo da linha AB indicada na figura); rev/min. O diâmetro interno do tambor é igual a 0.470 m. (c) passando pelo centro da esfera superior da (a) Qual é a razão entre a força radial máxima sobre a roupa, quando a velocidade angular é máxima, e a força esquerda e pelo centro da esfera inferior da direita e através do ponto O. radial, quando a velocidade angular é mínima? (b) Qual é a razão da velocidade tangencial máxima 0.400 m 0.200 kg da roupa quando a velocidade angular é máxima e quando a velocidade angular é mínima? (c) Calcule, em função de g a velocidade tangencial máxima da roupa e a aceleração radial máxima. A B O Figura 9.21 – Exercício 9.33. 9.34 Fator de Escala de /. Quando multiplicamos todas as dimensões de um objeto por um fator de escala/, sua massa e seu volume ficam multiplicados por / . a) O momento de inércia ficará multiplicado por qual fator? b) Sabendo que um modelo feito com uma escala de -w possui uma energia cinética relacional de 2,5 J, qual será a energia cinética do objeto sem nenhuma redução de escala feito com o mesmo material e girando com a mesma velocidade angular? Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori 9.35 Uma roda de carroça é feita como indicado na Figura 9.22. O raio da roda é igual a 0,300 m e o aro possui massa igual a 1.40 kg. Cada um dos seus oito raios, distribuídos ao longo de diâmetros, possuem comprimento de 0.300 m e massa igual a 0.280 kg. Qual é o momento de inércia da roda em relação a um eixo perpendicular ao plano da roda e passando pelo seu centro? (Use as fórmulas indicadas na Tabela 9.2.) 5 FIGURA 9.22 Exercício 9.35. 9.36 Uma hélice de avião possui massa de 117 kg e comprimento igual a 2.08 m (de uma extremidade a outra). A hélice está girando a 2400 rev/min em relação a um eixo que passa pelo seu centro, (a) Qual é sua energia cinética rotacional? Considere a hélice como uma barra delgada, (b) Supondo que ela não gire, de que altura ela deveria ser largada em queda livre para que adquirisse a mesma energia cinética? 9.37 (a) Mostre que as unidades de raio R = 1.20 m. Para impedir danos estruturais, a aceleração radial máxima de um ponto na sua periferia é igual a 3500 m/s². Qual é a energia cinética máxima que pode ser armazenada no volante? 9.42 Suponha que o cilindro maciço do dispositivo descrito no Exemplo 9.9 (Seção 9.5) seja substituído por uma casca cilíndrica com o mesmo raio R e com a mesma massa M. O cilindro é ligado ao eixo por meio de raios com momentos de inércia desprezíveis. (a) Calcule a velocidade da massa m suspensa no instante em que ela atinge o solo. (b) A resposta encontrada no item (a) é igual, maior ou menor do que a resposta do Exemplo 9.9? Explique sua resposta usando conceitos de energia. 9.43 Taxa de perda da energia cinética. Um corpo rígido com momento de inércia I gira uma vez a cada T segundos. A velocidade de rotação está diminuindo, de modo que dT/dt > 0. (a) Expresse a energia cinética da rotação do corpo em termos de I e de T. (b) Expresse a taxa de variação da energia cinética da rotação do corpo em termos de I, de T e de dT/dt. (c) Um volante grande possui I = 8,0 kg.m². Qual é a energia cinética do volante quando o período de rotação é igual a 1.5 s? (d). Qual é a taxa de variação da energia cinética do volante na parte (c) quando o período de rotação é igual a 1.5 s e quando ele varia com uma taxa dT/dt = 0.0060 s? 1 9.44 Uma corda uniforme de 10.0 m de comprimento I 2 são e massa igual a 3.00 kg está presa ao teto de um ginásio e a 2 equivalentes às unidades de joule. Explique por que a unidade "rad" não precisa ser incluída nessas unidades, (b) Geralmente w é expresso em rev/min em vez de rad/s. Escreva uma expressão para a energia cinética rotacional de forma que se / for expresso em kg . m2 e for expresso em rev/min, a energia cinética será expressa em joules. 9.38 O prato de discos de um fonógrafo antigo possui energia cinética igual a 0.0250 J quando gira com 45,0 rev/min. Qual é o momento de inércia do prato do fonógrafo em relação ao eixo de rotação? outra extremidade está quase tocando o solo. Qual é a variação da energia potencial gravitacional se a corda terminar esticada sobre o solo (sem espiras)? 9.45 Centro de massa de um objeto com massa distribuída. Qual é o trabalho realizado por um lutador para elevar o centro de massa de seu oponente de 120 kg até uma distância vertical igual a 0.700 m? SEÇÃO 9.6 TEOREMA DOS EIXOS PARALELOS 9.46 Calcule o momento de inércia de um aro (um anel fino) de raio R e massa M em relação a um eixo 9.39 Um volante de motor a gasolina deve fornecer perpendicular ao plano do aro passando pela sua periferia. uma energia cinética igual a 500 J quando sua velocidade angular diminui de 650 rev/min para 520 rev/min. Qual é o 9.47 Em relação à qual eixo uma esfera uniforme de momento de inércia necessário'? madeira leve possui o mesmo momento de inércia de uma casca cilíndrica de chumbo de mesma massa e raio em 9.40 Uma corda leve e flexível é enrolada diversas relação a um diâmetro? vezes em tomo da periferia de uma casca cilíndrica com raio de 0.25 m e massa igual a 40.0 N, que gira sem atrito em 9.48 Use o teorema dos eixos paralelos para mostrar tomo de um eixo horizontal fixo. O cilindro é ligado ao eixo que os momentos de inércia das partes (a) e (b) da Tabela 9.2 por meio de raios com momentos de inércia desprezíveis. O são coerentes. cilindro está inicialmente em repouso. A extremidade livre da corda é puxada com uma força constante P até uma distância 9.49 Uma placa metálica fina de massa M tem forma de 5.00 m, e nesse ponto a extremidade da corda se move a retangular com lados a e b. Use o teorema dos eixos paralelos 6.00 m/s. Sabendo que a corda não desliza sobre o cilindro, para determinar seu momento de inércia em relação a um qual é o valor de P? eixo perpendicular ao plano da placa passando por um dos seus vértices. 9.41 Desejamos armazenar energia em um volante de 70.0 kg que possui forma de um disco maciço uniforme com 9.50 (a) Para a placa retangular fina indicada na pane Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori (d) da Tabela 9.2, ache o momento de inércia em relação a um eixo situado sobre o plano da placa passando pelo seu centro e paralelo ao eixo indicado na figura, (b) Ache o momento de inércia da placa em relação a um eixo situado sobre o plano da placa passando pelo seu centro e perpendicular ao eixo mencionado no item (a). *SEÇÁO 9.7 CÁLCULOS DE MOMENTO DE INÉRCIA 6 *9.51 Usando o teorema dos eixos paralelos e informações da Tabela 9.2, ache o momento de inércia da barra delgada de massa M e comprimento L indicado na Figura 9.18 em relação a um eixo passando pelo ponto O situado a uma distância arbitrária h de uma de suas extremidades. Compare seu resultado com o encontrado no Exemplo 9.12 (Seção 9.7). *9.52 Use a Equação (9.20) para calcular o momento de inércia de um disco maciço, uniforme, de raio R e massa M em relação a um eixo perpendicular ao plano do disco passando pelo seu centro. *9.53 Use a Equação (9.20) para calcular o momento de inércia de uma barra delgada de massa M e comprimento L em relação a um eixo perpendicular à barra e passando pela sua extremidade. *9.54 Uma barra delgada de comprimento L possui massa por unidade de comprimento variando a partir da extremidade esquerda, onde x = O, de acordo com dm/dx = x, onde é constante com unidades de kg/m², (a) Calcule a massa total da barra em termos de e de L. (b) Use a Equação (9.20) para calcular o momento de inércia da barra em relação a um eixo perpendicular à barra e passando pela sua extremidade esquerda. Use a relação encontrada na parte (a) para obter a expressão de / em termos de M e de L. Como seu resultado se compara com o obtido para uma barra delgada uniforme? Explique essa comparação, (c) Repita o procedimento da parte (b) para um eixo passando pela extremidade direita da barra. Como seu resultado se compara com o obtido nas partes (b) e (c)? Explique esse resultado. Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori PROBLEMAS 9.60 Um automóvel clássico Chevrolet Corvette 1957 com 1240 kg parte do repouso e acelera com aceleração tangencial constante igual a 3.00 m/s2 em uma pista de teste circular com raio de 60.0 m. Considere o carro como uma partícula, (a) Qual é sua aceleração angular? (b) Qual é sua velocidade angular 6.00 s depois do início? (c) Qual é sua aceleração radial nesse instante? (d) Faça um esboço de uma vista de topo mostrando a pista circular, o carro, o vetor velocidade e os componentes do vetor aceleração 6.00 s depois de o carro iniciar o movimento, arad v arad r (e) Qual é o módulo da aceleração resultante e da força resultante sobre o carro nesse instante? (Veja o Exercício 9.26.) (f) Qual é o ângulo formado entre a velocidade do carro 9.56 (a) Prove que, quando um objeto parte do repouso e nesse instante e a aceleração resultante e entre a velocidade e a gira em torno de um eixo fixo com aceleração angular força resultante? constante, a aceleração radial de um ponto do objeto é 9.61 O volante de uma prensa de perfuração possui diretamente proporcional ao seu deslocamento angular, momento de inércia igual a 16,0 kg. M2 e gira a 300 rev/min. O (b) Qual foi o deslocamento angular total do objeto quando a aceleração resultante fez um ângulo de 36.9° com a direção volante fornece toda a energia necessária para a rápida operação de perfuração. radial inicial? (a) Calcule a velocidade em rev/min para a qual a velocidade do volante se reduz devido a uma repentina 9.57 O rolo de uma impressora gira um ângulo: operação de perfuração que necessita de 4000 J de trabalho, 2 3 t t t (b) Qual deve ser a potência (em watts) fornecida ao 2 3 volante para que ele retorne para sua velocidade inicial em 5.00 = 3.20 rad/s e = 0,500 rad/s . s? (a) Calcule a velocidade angular do rolo em função do tempo, 9.62 Um bolinho de carne deteriorada de um bar, com (b) Calcule a aceleração angular do rolo em função do massa igual a 40.0 g, está preso à extremidade livre de um fio tempo, (c) Qual é a velocidade angular positiva máxima, e para de 2.50 m preso ao teto. O bolinho é puxado horizontalmente até formar um ângulo de 36.9° com a vertical e a seguir é qual valor de t isso ocorre? libertado, (a) Qual deve ser o módulo, a direção e o sentido da *9.58 Uma roda de bicicleta com raio igual a 0.33 m gira 2 velocidade angular do bolinho na primeira vez que a aceleração com aceleração angular t t , onde = 1.80 rad/s angular se anula? e = 0.25 rad/s³. Ela está em repouso para t = 0. (b) Qual é o segundo instante em que t = 0? (a) Calcule a velocidade angular e o deslocamento angular (c) Nos instantes descritos nas partes (a) e (b), qual é o em função do tempo. módulo, a direção e o sentido da aceleração radial do bolinho? (b) Calcule a velocidade angular positiva máxima e o (d) Mostre que a resposta da parte (c) não depende do deslocamento angular positivo máximo da roda. {Sugestão: comprimento do fio. Veja a Seção 2.7.} 9.63 A correia de uma máquina de lavar a vácuo é 9.59 Quando um carrinho de brinquedo é atritado contra o enrolada ligando um eixo de raio igual a 0.45 cm com uma piso, ele acumula energia em um volante. O carrinho possui roda de raio igual a 2.00 cm. O arranjo envolvendo a correia, o massa igual a 0.180 kg. e seu volante possui momento de eixo e a roda é semelhante ao descrito na Figura 9.11 inércia igual a 4.00.10kg.m2. O carrinho possui comprimento envolvendo a corrente e as rodas dentadas de uma bicicleta. O igual a 15.0 cm. Uma propaganda alega que a velocidade de motor faz o eixo girar com 60.0 rev/s e a correia faz a roda escala do carrinho pode atingir 700 km/h. A velocidade de girar, que por sua vez está ligada a um outro eixo que empurra escala é a velocidade do carrinho multiplicada pelo fator de a sujeira para fora do tapete que está sendo lavado a vácuo. escala dado pela razão entre o comprimento de um carro real e Suponha que a correia não deslize nem sobre o eixo nem sobre o comprimento do carrinho de brinquedo. Considere um carro a roda. real de comprimento igual a 3.0 m. (a) Qual é a velocidade de um ponto sobre a correia? (a) Para uma velocidade de escala de 700 km/h, qual deve (b) Qual é a velocidade angular da roda em rad/s? ser a velocidade de translação efetiva do carrinho? (b) Supondo que toda a energia cinética inicialmente 9.64 O motor de uma serra de mesa gira com 3450 acumulada no volante possa ser convertida em energia cinética rev/min. Uma polia ligada ao eixo do motor movimenta uma de translação do carrinho, qual foi a energia cinética segunda polia com metade do diâmetro através de uma correia inicialmente acumulada no volante? V. Uma serra circular de diâmetro igual a 0.208 m está (c) Qual será a velocidade angular inicial necessária para montada sobre o mesmo eixo da segunda polia, que o volante tenha a quantidade de energia cinética acumulada (a) O operador não é cuidadoso, e a lâmina lança para trás no item (b)? um pequeno pedaço de madeira. A velocidade do pedaço de madeira é igual à velocidade tangencial na periferia da lâmina. 9.55 Faça um desenho de uma roda situada no plano do papel e girando no sentido anti-horário. Escolha um ponto sobre a circunferência e desenhe um vetor r ligando o centro com esse ponto, (a) Qual é a direção e o sentido do vetor ? que a velocidade desse ponto é dada por Mostre (b) v r . (c) Mostre que a aceleração radial desse ponto é dada por 7 Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori 8 Qual é essa velocidade? (b) Calcule a aceleração radial nos pontos sobre a periferia 9.67 A Terra, que não é uma esfera uniforme, possui da lâmina para entender por que o pó da madeira serrada não momento de inércia igual a 0.3308MR2 em relação a um eixo fica grudado em seus dentes. ligando o pólo norte ao pólo sul. O tempo para a Terra completar um giro é igual a 86164 s. Use o Apêndice F para 9.65 Uma roda varia sua velocidade angular com uma calcular aceleração angular constante enquanto gira em tomo de um (a) a energia cinética da Terra oriunda do movimento eixo fixo passando em seu centro, de rotação em tomo desse eixo e (a) Mostre que a variação do módulo da aceleração radial (b) a energia cinética da Terra oriunda do movimento de um ponto sobre a roda durante qualquer intervalo de tempo orbital da Terra em tomo do Sol. é igual ao dobro do produto da aceleração angular vezes o (c) Explique como o valor do momento de inércia da deslocamento angular e vezes a distância perpendicular do Terra nos informa que a massa da Terra está mais concentrada ponto ao eixo. perto do seu centro. (b) A aceleração radial de um ponto sobre a roda situado a uma distância de 0.250 m do eixo varia de 25.0 m/s2 a 85.0 9.68 Um disco maciço uniforme de massa m e raio R m/s2 para um deslocamento angular da roda igual a 15.0 rad. está apoiado sobre um eixo horizontal passando em seu centro. Calcule a aceleração tangencial desse ponto, Um pequeno objeto de massa w está colado na periferia do (c) Mostre que a variação da energia cinética da roda disco. Se o disco for libertado do repouso com o pequeno durante qualquer intervalo de tempo é igual ao produto do objeto situado na extremidade de um raio horizontal, ache a momento de inércia da roda em relação ao eixo vezes a velocidade angular quando o pequeno objeto estiver aceleração angular e vezes o deslocamento angular, verticalmente embaixo do eixo. (d) Durante o deslocamento angular de 15.0 rad mencionado na parte (b), a energia cinética da roda cresce de 9.69 Uma régua de um metro e massa igual a 0.160 kg 20.0 J para 45.0 J. Qual é o momento de inércia da roda em possui um pivô em uma de suas extremidades de modo que ela relação ao eixo de rotação? pode girar sem atrito em tomo de um eixo horizontal. A régua é mantida em uma posição horizontal e a seguir é libertada. 9.66 Os três objetos uniformes indicados na Figura 9.23 Enquanto ela oscila passando pela vertical, calcule possuem a mesma massa m. O objeto A é um cilindro maciço (a) a variação da energia potencial gravitacional de raio R. O objeto B é uma casca cilíndrica de raio R objeto C ocorrida; é um cubo maciço cuja aresta é igual a 2R. O eixo de rotação (b) a velocidade angular da régua; de cada objeto é perpendicular à respectiva base e passa pelo (c) a velocidade linear na extremidade da régua oposta centro de massa do objeto. ao eixo. (a) Qual dos objetos possui o menor momento de inércia? (d) Compare a resposta da parte (c) com a velocidade Explique, de um objeto caindo de uma altura de 1.00 m a partir do (b) Qual dos objetos possui o maior momento de inércia? repouso. Explique, (c) Como você compara esses resultados com o momento 9.70 Exatamente uma volta de uma corda flexível de de inércia de uma esfera maciça uniforme de massa m e raio R massa m é enrolada na periferia de um cilindro uniforme em relação a um eixo de rotação ao longo de um diâmetro da maciço de massa M e raio R. O cilindro gira sem atrito em esfera? Explique. 2R tomo de um eixo horizontal ao longo do seu eixo. Uma das extremidades da corda está presa ao cilindro. O cilindro começa a girar com velocidade angular . Depois de uma 2R revolução, a corda se desenrolou e nesse instante ela está pendurada verticalmente tangente ao cilindro. Calcule a velocidade angular do cilindro e a velocidade linear da extremidade inferior da corda nesse instante. Despreze a espessura da corda. {Sugestão: Use a Equação (9.18).} A B 2R C Figura 9.23 – Problema 9.66. 9.71 A polia indicada na Figura 9.24 possui raio R e momento de inércia I. A corda não desliza sobre a polia e esta gira em um eixo sem atrito. O coeficiente de atrito cinético entre o bloco A e o topo da mesa é C. O sistema é libertado a partir do repouso, e o bloco B começa a descer. O bloco A possui massa mA e o bloco B possui massa mB. Use métodos de conservação da energia para calcular a velocidade do bloco B em função da distância d que ele desceu. FIGURA 9.24 - Problema 9.71. Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori 9 9.72 A polia indicada na Figura 9.25 possui raio 0.160 atingiria quando ela retomasse verticalmente para cima depois m e momento de inércia 0.480 kg.m2. A corda não desliza de colidir com o solo? sobre a periferia da polia. Use métodos de conservação da (b) Explique, em termos de energia, por que a resposta energia para calcular a velocidade do bloco de 4.00 kg no da parte (a) é menor do que h. momento em que ele atinge o solo. 9.77 Um disco uniforme fino possui massa M e raio R. Fazemos um buraco circular de raio R/4 centralizado em um ponto situado a uma distância RH do centro do disco, (a) Calcule o momento de inércia do disco com o buraco em de inércia do disco que foi retirado do disco maciço.) (b) Calcule o momento de inércia do disco com o buraco em relação a um eixo perpendicular ao plano do disco 4,00 kg passando pelo centro do buraco. 5,00 m 2.00 kg FIGURA 9.25 - Problema 9.72. 9.73 Você pendura um aro fino de raio R em um prego na periferia do aro. Você o desloca lateralmente até um ângulo a partir de sua posição de equilíbrio e a seguir o liberta. Qual é sua velocidade angular quando ele retoma para sua posição de equilíbrio? (Sugestão: Use a Equação (9.18).) 9.74 Um ônibus de passageiro em Zurique, na Suíça, usa sua potência motora oriunda da energia acumulada em um volante grande. Utilizando-se de energia da rede elétrica, a roda é colocada em movimento periodicamente quando o ônibus para em uma estação. O volante é um cilindro maciço de massa igual a 1000 kg e raio igual a 1.80 m; sua velocidade angular máxima é igual a 3000 rev/min. (a) Para essa velocidade angular, qual é a energia cinética do volante? (b) Se a potência média necessária para operar o ônibus for igual a 1.86.104 W, qual é a distância máxima que ele pode se mover entre duas paradas? 9.78 Um pêndulo é constituído por uma esfera uniforme maciça com massa M e raio R suspensa pela extremidade de uma haste leve. A distância entre o ponto de suspensão na extremidade superior da haste e o centro da esfera é igual a L. O momento de inércia do pêndulo 1^ para uma rotação em torno do ponto de suspensão é geralmente aproximado como ML2, (a) Use o teorema dos eixos paralelos para mostrar que se R for 5% de L e se a massa da haste for desprezível, Ip será somente 0.1 % maior do que ML2. (b) Se a massa da haste for l % de M e se R for 5% de L, qual será a razão entre Ihaste em relação a um eixo passando pelo pivô e ML2? 9.79 Teorema dos eixos perpendiculares. Considere um corpo rígido constituído por uma placa plana fina de forma arbitrária. Suponha que o corpo esteja sobre o plano xy e imagine que a origem seja um ponto O no interior ou no exterior do corpo. Seja Ix, o momento de inércia em relação ao eixo Ox, Iy o momento de inércia em relação ao eixo Oy e I0 o momento de inércia do corpo em relação a um eixo perpendicular ao plano e passando pelo ponto 0. (a) Considerando elementos de massa mi, com coordenadas (xi, yi), mostre que I0 = Ix + Iy. Essa relação é o teorema dos eixos perpendiculares. Note que o ponto O não precisa ser o centro de massa, (b) Para uma arruela fina de massa M, raio interno R1, e raio externo R2 use o teorema dos eixos perpendiculares para achar o momento de inércia em relação a um eixo situado no plano da arruela e que passa através de seu centro. Você pode usar as informações da Tabela 9.2. (c) Use o teorema dos eixos perpendiculares para mostrar que o momento de inércia de uma placa fina quadrada de massa M e lado L em relação a qualquer eixo situado no plano da placa e que passa através de seu centro é igual a ML2/12. Você pode usar as informações da Tabela 9.2. 9.75 Dois discos metálicos, um com raio R1 = 2.50 cm e massa M1 = 0.80 kg e o outro com raio R2 = 5.00 cm e massa M2 = 1.60 kg, são soldados juntos e montados em um eixo sem atrito passando pelo centro comum (Figura 9.26). (a) Qual é o momento de inércia dos dois discos? (b) Um fio fino é enrolado na periferia do disco menor, e um bloco de l ,50 kg é suspenso pela extremidade livre do fio. Se o bloco é libertado do repouso a uma distância de 2.00 m acima do solo, qual é sua velocidade quando ele atinge o solo? 9.80 Uma haste uniforme fina é dobrada em forma de (c) Repita o cálculo da parte (b), agora supondo que o fio seja enrolado na periferia do disco maior. Em qual dos dois um quadrado de lado a. Sendo M a massa total, ache o casos a velocidade do bloco é maior? Explique por que isso momento de inércia em relação a um eixo situado no plano do quadrado e que passa através de seu centro. (Sugestão: Use o deve ser assim. teorema dos eixos paralelos.) 9.76 No cilindro junto com a massa do Exemplo 9.9 *9.81 Um cilindro de massa M e raio R possui uma (Seção 9.5). suponha que a massa m que cai seja feita de borracha, de modo que nenhuma energia mecânica é perdida densidade que cresce linearmente a partir do seu eixo, = r, quando a massa atinge o solo. a) Supondo que o cilindro não onde uma constante positiva, a) Calcule o momento de estivesse girando inicialmente e a massa m fosse libertada do inércia do cilindro em relação a um eixo longitudinal que passa repouso a uma altura h acima do solo, até que altura essa massa através de seu centro em termos de M e de R. b) Sua resposta é Exercícios – Capítulo 9 – Rotação de Corpos rígidos – Sears e Zemansky, Young & Freedman – Física I – Editora Pearson, 10ª Edição Prof. Dr. Cláudio S. Sartori maior ou menor do que o momento de inércia de um cilindro com mesma massa e mesmo raio porém com densidade constante? Explique qualitativamente por que esse resultado faz sentido. PROBLEMAS DESAFIADORES 9.82 Estrelas de nêutrons e restos de supemovas. A nebulosa do Caranguejo é uma nuvem de gás luminoso que possui uma extensão de 10 anos-luz, localizada a uma distância aproximadamente igual a 6500 anos-luz da Terra (Figura 9.27). São os restos de uma explosão de uma supernova, observada da Terra no ano de 1054. A nebulosa do Caranguejo liberta energia com uma taxa aproximada de 10 R2 R1 Figura 9.27 – Problema 9.82 m = 1.50 kg FIGURA 9.26 - Problema 9.75. 9.83 O momento de inércia de uma esfera com densidade constante em relação a um eixo que passa através de seu centro é dado por 2MR2/5 = 0.400MR2. Observações feitas por satélites mostram que o momento de inércia da Terra é dado por 0.3308MR2. Os dados geofísicos sugerem que a Terra é constituída basicamente de cinco regiões: o núcleo central (de r = 0 a r= 1220 km) com densidade média igual a 12.900 kg/m³ o núcleo externo (de r = 1220 km a r = 3480 km) com densidade média igual a 10900 kg/m³ , o manto inferior (de r = 3480 km a r = 5700 km) com densidade média igual a 4900 kg/m³ o manto superior (de r = 5700 km a r = 6350 km) com densidade média igual a 3600 kg/m3 e a crosta e os oceanos (de r = 6350 km a r = 6370 km) com densidade média igual a 2400 kg/m³. (a) Mostre que o momento de inércia de uma esfera oca com raio interno R1 e raio externo R2 e densidade constante é dado por: I 8 R25 R15 15 R h Eixo Figura 9.28 – Problema 9.84 9.85 Em um CD, a música é codificada em uma (Sugestão: Forme a esfera oca pela superposição de configuração de minúsculas reentrâncias dispostas ao longo de uma esfera grande com densidade e uma esfera pequena com uma trilha que avança formando uma espiral do interior à densidade -). periferia do disco. À medida que o disco gira no interior de um (b) Confira os dados usando-os para calcular a massa CD player, a trilha é varrida com velocidade linear constante da Terra, = 1.25 m/s. Como o raio da trilha espiral aumenta à medida (c) Use os dados fornecidos para calcular o momento que o disco gira, a velocidade angular do disco deve variar de inércia da Terra em termos de MR2. quando o CD está girando. (Veja o Exercício 9.20.) Vamos ver qual é a aceleração angular necessária para manter v constante. *9.84 Determine o momento de inércia de um cone A equação de uma espiral é dada por: maciço uniforme em relação a um eixo que passa através de r r0 seu centro (Figura 9.28). O cone possui massa M e altura h. O , onde r0 é o raio da espiral para = 0 e uma constante. Em raio do círculo da sua base é igual a R. um CD, r0 é o raio interno da trilha espiral. Considerando Sears &Zemansky – Prof. Dr. Cláudio S. Sartori como positivo o sentido da rotação do CD, deve ser positivo, de modo que r e acrescem à medida que o disco gira. (a) Quando o disco gira através de um pequeno ângulo d, a distância varrida ao longo da trilha é ds = r d. Usando a expressão anterior para r(), integre ds para calcular a distância total s varrida ao longo da trilha em função do ângulo total descrito pela rotação do disco. (b) Como a trilha é varrida com velocidade linear constante v, a distância total s encontrada na parte (a) é igual a vt. Use esse resultado para achar 0em função do tempo. Existem duas soluções para ; escolha a positiva e explique por que devemos escolher essa solução. c) Use essa expressão de (t) para determinar a velocidade angular e a aceleração angular em função do tempo. O valor de é constante? (d) Em um CD, o raio interno da trilha é igual a 25.0 mm, o raio da trilha cresce 1.55m em cada volta e o tempo de duração é igual a 74.0 min. Calcule os valores de r0 e de ache o número total de voltas feitas durante o tempo total da reprodução do som. (e) Usando os resultados obtidos nas partes (c) e (d), faça um gráfico de (em rad/s) contra t e um gráfico de (em rad/s2) contra t desde t = 0 até t = 74.0 min. Sears &Zemansky – Prof. Dr. Cláudio S. Sartori Gabarito – Exercícios Ímpares Gabarito Exercício 9.1 (a) 0.600rad (b) 6.27 cm (c) 1.05 m (t ) 0.4 0.036 t 2 (a) (a) α(t) = 2b-6ct (b) b/3c 9.7 (a) 24s (b) 68.8rev 10.5rad/s 9.13 9.17 9.19 (a) (b) 9.61 9.63 9.65 9.67 arad 18.0 m s 2 v 3.00 m s, arad 18.0 m s (a) 0.180 m s 2 ,0.377 m s 2 ,0.418 m s 2 2 2 2 (c) 0.180 m s ,0.754 m s ,0.775 m s (b) 9.25 10.7 cm; não 9.27 (a) 0.831m s (b) 109 m/s² 9.29 (a) 2.29 (b) 1.51 2 gd mB C mA 9.75 (a) 0.064kg m2 (b) 0.032kg m2 (c) 0.032kg m2 0.193kg m2 9.37 9.39 (b) K = π²I²/1800 9.41 7.35 104 J 0.600kg m2 (a) K 2 I T 2 (a) 70J (d) 0.56 J s (c) 75 kg Um eixo paralelo e a uma distância 15 R do centro da esfera mB I R 2 247 512 MR2 (b) 383 512 MR2 (b) 1 4 M R12 R22 3 MR 2 (b)maior. 5 24 2 (b) 5.97 10 kg (b) 0.334MR (a) 9.81 9.83 (a) s r0 (b) (c) dK dt 4 2 I T 3 dT dt A 2.25 103 kg m2 (b) 3.40 m s (c) 4.95m s (a) 9.85 2 m g R 1 cos 9.73 9.79 9.35 2 2.14 1029 J 33 (b) 2.66 10 J (a) 0.784J (b) 5.42 rad s (c) 5.42 m s (d) velocidade da partícula: 4.43m s (a) 9.77 (M/12+m/2)L2 9.31 (b) 9.71 rad/s (a) 211 rev/s. (b) 800 W (a) 1.70 m/s (b) 84.8 rad/s (b) 2.00 m/s² (d) 0.208 kg.m² s ,1.06 103 m s 2 108g . (c) 15.7 m 9.45 9.47 9.69 2 0.180 m s 2 ,0,0.180 m s 2 9.33 9.53 3.60 m s (b) 43.7 m s (a) 9.43 1 M L2 3Lh 3h 2 3 1 2 ML 3 2 (a) 6.4 t 1.5 t (b) 6.4 3 t (c) máx 6.83 rad s para t 2.13s (a) 35.0km/h = 9.72 m/s (b) 8.51J (c) 652 9.59 9.00 rev (a) 540 rad (b) 12.3s (c) -8.17 rad/s² 9.15 9.23 9.51 9.57 (a)-1.25 rev/s2, 23.3 rev (b) 2.67 s. 9.11 9.21 1 M a 2 b2 3 (b) 0.4 rad/s (c) = 1.30 rad/s, rad = 0.700 rad/s 9.9 Gabarito 9.49 (a) 42 rad/s² (b) 74 rad/s 9.3 9.5 Exercício 2 2 1 r02 2 v t r0 v r02 2 v t v2 r 2 0 3 2 v t 2 (d) r0 2.50cm, 0.247 m rad ,2.13 104 rev Sears &Zemansky – Prof. Dr. Cláudio S. Sartori 2ave 2 0 , 0 27 rad / s. (b) 108 rad / s ( 27 rad / s ) 33.8 rad / s 2 . t 4.00 s Gabarito – Exercícios Pares resolvidos Cortesia: Editora Pearson (a) rev 2 rad 1 min 199rad / s. 1900 x min rev 60 s 9-2: 9-14: 0 0, (b)(35º x rad/180º)/(199 rad/s) = 3.07 x 10 -3 s. (a) (t ) dw 2 t ( 1.60 rad / s 3 )t. 9-4: Da Eq. (9-7), com 140 rad / s t 6.00 s 23.33 rad / s 2 . O ângulo é mais facilmente encontrado de : avet (70 rad / s)(6.00 s) 420 rad . dt (b) (3.0 s) = (-1.60 rad/s3)(3.0 s) = -4.80 rad/s2 9-16: A seguinte tabela dá as revoluções e o ângulo 2.40 rad / s 2 , através dos quais uma roda gira em cada instante de tempo e 3.0 s 3.0 s em três situações distintas: o qual é tão grande (em, módulo) quanto a aceleração para t = 3.0 s. ave (3.0 s) (0) 2.20 rad / s 5.00 rad / s 9-6: =(250 rad/s) – (40.0 rad/s2)t – (4.50 rad/s3)t2, = -(40.0 rad/s2) – (9.00 rad/s3)t. (a) Fazendo-se = 0 resulta em uma equação quadrática em t; o único valor de tempo positivo para o qual = 0 é t = 4.23 s. (b) At t = 4.23 s, = -78.1 rad/s2. (c) At t = 4.23 s, = 586 rad = 93.3 rev. (d) At t = 0, = 250 rad/s. (e) ave = 9-8: 586 rad 138 rad / s. 4.23 s 0 t (a) Os gráficos de e são os seguintes: (a) 1.50 rad / s (0.300 rad / s2 )(2.50 s) 2.25 rad / s (b) 0t 1/ 2 t 2 1 2 (1.50 rad / s)(2.50 s) (0.300 rad / s 2 )(2.50 s)2 4.69 rad 9-10: (b) (a)Resolvendo a Eq. (9-7) para t resulta em: t 0 . Reescrevendo a Eq. (9-11) como: 1 0 t (0 t ) 2 encontramos: e substituindo t 0 1 0 ( 0 ) 2 0 (c) 0 ( 0 ) 2 1 2 02 , 2 1 a qual quando re-agrupada resulta na Eq. (912). (b) = (1/2)(1/∆)(2 - 02 ) rad/s)2 – (12.0 rad/s)2) = 8 rad/s2. = (1/2)(1/(7.00 rad))((16.0 9-18: (a) A Equação (9-7) é resolvida para = - t, 0 resultando em: 9-12: (a) A velocidade angular média é: e portanto a velocidade angular inicial é: 162 rad 40.5 rad / s, 4.00 s 1 ave t , or 0 t t 2 . 2 2 Sears &Zemansky – Prof. Dr. Cláudio S. Sartori 2 2 0.125 rad / s 2 . t t t 5.5 rad / s. (b) (c) 9-20: s. (Existem muitos modos equivalentes de se realizar estes cálculos ) 9-30: (a) 1.25 m / s 1.25 m 50.0 rad / s, 21.55 rad / s, 3 25.0 x 10 m 58.0 x 103 m ou 21.6 rad/s , para três algarismos significativos. (b) (1.25 m/s)(74.0 min)(60 s/min) = 5.55 km. (c) 50.0 rad / s 21.55 rad / s 6.41 x 103 rad / s 2 . (74.0 min)( 60 s / min) De rad 9-22: r qual A distância das massas relativo ao eixo são: L L 3L e portanto da Eq. (9-16), o momento de inércia é: , e , 4 4 4 2 r, x 104 2 1 1 ML2 (0.042 kg)(1.50 m)2 7.88 x 103 kg m2 . 12 12 (b) rad/s) 2 9-32: Como a vara possui um comprimento de 500 vezes maior que a sua largura, então a mesma pode ser considerada como sendo uma vara fina (a) Da Tabela (9-2(a)), I 400,000 x 9.80 m / s 2 1.25 x 104 rad / s, 2 2.50 x 10 m é(1.25 2 L L 3L 11 I m m m mL2 . 4 4 4 16 Da Tabela (9-2(b)), 1 1 I ML2 (0.042 kg)(1.50 m)2 3.15 x 102 kg m 2 . 3 3 1 rev / 2 rad 1.20 x 105 rev / min . 1 min/ 60 s (b) Para esta vara fina o momento de inércia relativo ao seu eixo é obtido considerando-a como um cilindro sólido e, da Tabela (9-2(f)), 0.750 m v r (0.430 rev / s x 2 rad / rev ) 1.01m / s. 2 9-36: 9-24: (a) = 0 +t = 0.250 rev/s + (0.900 1 1 2 3 2 8 2 rev/s2)(0.200 s) = 0.430 rev/s (note que desde que 0 e são I 2 MR 2 (0.042 kg)(1.5 x 10 m) 4.73 x 10 kg m . dados em termos das revoluções, não é necessário converter para radianos). 9-34: (a) Na expressão da Eq. (9-16), cad termo terá a massa (b) onda∆t = (0.340 rev/s)(0.2 s) = 0.068 rev. multiplicada por f 3 e a distância multiplicada por f, e então o (c) Aqui, a conversão para radianos deve ser realizada para que momento de inércia é multiplicado por f 3(f) 2 = f 5. se possa utilizar a Eq. (9-13), então (b) (2.5)(48)5 = 6.37 x 108. (a) Da Eq. (9-17), com I da Tabela (9-2(f)), 2 1 1 2 2 1 rev 2 rad / rev K mL (117 kg)( 2.08 m)2 2400 x 1.3 x 106 J . (d) Combinando as Equações (9-14) e (9-15), 2 rad tan2 ( 2 r ) 2 (r ) 2 2 12 24 min 60 s / min (b) De mgy = K, y (( 0.430 rev / s x 2 rad / rev ) 4 (0.375 m)) 2 (( 0.900 rev / s 2 x 2 rad / rev )( 0.375 m)) 2 2 K (1.3 x 106 J ) 1.16 x 103 m 1.16 km. 2 mg (117 kg)( 9.80 m / s ) 1 3.46 m / s . 2 9-26: (a) I Combinando as Equações (9-13) e (9-15), v rad 2 r 2 v. rad 0.500 m / s 2 9-28: v 2.00 m / s Resolvendo a Eq. (9-17) para I, temos: 2K 2 2(0.025 J ) 2.25 x 103 kg m 2 . 2 rad / s 2 (45 rev / min x ) 60 rev / min 9-40: O trabalho realizado sobre o cilindro é PL, onde L é o comprimento da corda.Combinando as Equações (9-17), (9-13) e a expressão para I , ver Tabela (9-2(g)), temos: (b) Do resultado da parte (a), temos: 9-38: PL 0.250 rad / s. 1w 2 1 w v 2 (40.0 N )(6.00 m / s) 2 v P 14.7 N . 2g 2 g L 2(9.80 m / s 2 )(5.00 m) 9-42: tan 10.0 m / s 2 (a) 50.0 rad / s 2 r 0.200 m (a) Com I = MR2, a expressão para v é: v 2 gh . 1 M / m v 50.0 m / s 250rad / s, r 0.200 e para t = 0, v = 50.0 m/s + (-10.0 m/s2)(0 – 3.00 s) = 80.0 m/s, então = 400 rad/s. (c) avet = (325 rad/s)(3.00 s) = 975 rad = 155 rev. Esta expressão é menor que aquela para um cilindro sólido. A maior parte da massa está concentrada na sua borda, então, para uma dada velocidade, a energia cinética do cilindro é maior. Uma grande parte da energia potencial é convertida para energia cinética do cilindro, e portanto, uma quantidade menor está disponível para a massa em queda . v rad r (9.80 m / s 2 )( 0.200 m) 1.40 m / s. velocidade será alcançada em um tempo de: 9-44: O centro de massa caiu metade do comprimento da corda, então a variação na energia potencial gravitacional é: (b) Para t = 3.00 s, v = 50.0 m/s e (d) Esta 50.0 m / s 1.40 m / s 4.86 s após t = 3.00 s, ou para t = 7.86 1 mgL 1 (3.00 kg)( 9.80 m / s 2 )(10.0 m) 147 J . 10.0 m / s 2 2 2 Sears &Zemansky – Prof. Dr. Cláudio S. Sartori 9-46: Na Eq. (9-19), Icm = MR2 e d = R2 , então IP = 2MR2. 2 2 3 2 9-48: Utilizando o Teorema dos Eixos Paralelos para se t t (1.80 rad / s )t (0.125 rad / s )t . 2 encontrar o momento de inércia de uma corda fina relativo ao eixo através de sua extremidade e perpendicular a corda, t 2 t 3 (0.90 rad / s 2 )t 2 (0.042 rad / s 3 )t 3 . temos: 2 6 2 (b) A velocidade angular positiva máxima ocorre quando = M L M L2 M L2 . 3 2 1 I Ma 2 12 I P I cm Md 2 9-50: (a) I (b) 12 ; 0, ou t = a velocidade angular para este tempo é: 2 1 2 1 (1.80 rad / s 2 ) 2 6.48 rad / s. 3 2 2 2 (0.25 rad / s ) 1 Mb 2 12 9-52: A análise é idêntica aquela do Exemplo 9-13, com o O deslocamento angular máximo ocorre quando 0, para o limite inferior na integral sendo zero, o limite superior sendo 2 tempo (t = 0 é um ponto de inflexão e (0) não é um igual a R, e a massa M LpR . O resultado é: t 1 I NR 2 , o que está de acordo com a Tabela (9-2(f)). 2 Para estes caso temos dm = dx. 9-54: (a) M dm L 0 (b) I 0 L x dx x4 x 2 (x )dx 4 x2 2 0 L L4 L2 2 M L2 0 4 2 L . 2 máximo ) e o deslocamento angular para este tempo é: 2 3 2 2 2 3 2 (1.80 rad / s 2 )3 62.2 rad . 2 6 3 2 3 (0.25 rad / s 3 ) 9-60: (a) tan r 3.00 m / s 2 0.050 rad / s 2 . 60.0 m (b)t (0.05 rad / s 2 )( 6.00 s ) 0.300 rad / s. (c) rad 2 r (0.300 rad / s )2 (60.0 m) 5.40 m / s 2 . Isto é maior que o momento de inércia de uma corda uniforme de mesma massa e comprimento, visto que a densidade de (d) massa é bem maior longe do eixo que quando mais próximo dele . (c) I 0 ( L x ) 2 xdx L 0 ( L2 x 2 Lx 2 x 3 ) dx L 2 x3 x4 x L2 2 L 3 4 2 4 L 12 M L2 . 6 L 0 (e) 2 rad tan2 (5.40 m / s 2 )2 (3.00 m / s 2 )2 6.18 m / s 2 , e o módulo da força é : F = ma = (1240 kg)(6.18 m/s2) = 7.66 kN. Este é um terço do resultado encontrado na parte (b), refletindo (f) arctan o fato de que mais a massa está concentrada no final . rad 5.40 o arctan 60.9 . 3 . 00 tan 9-56: (a) Para uma aceleração angular constante, temos: 9-62: (a) A aceleração angular será zero quando a 2 velocidade for um máximo, o que ocorre na parte inferior do rad 2 r 2 r. 2 circulo . De considerações de energia, a velocidade é: (b) Denotando como o ângulo que o vetor aceleração faz v = 2 gh 2 gR(1 cos ) , onde é o com a direção radial, e utilizando as Equações (9-14) e (9-15), ângulo entre a vertical, livre, e tan r r 1 tan então rad 2 r 2r 2 , 1 1 0.666 rad . 2 tan 2 tan 36.9o 9-58: (a) 5) e (9-3), v 2g (1 cos ) R R 2(9.80 m / s 2 ) (1 cos36.9o ) 1.25 rad / s. (2.50 m) Por integrações sucessivas das Equações (9- (b) será novamente igual a 0 quando a almôndega passa através do ponto mais baixo. (c)rad é direcionada em direção ao centro, isto é: Sears &Zemansky – Prof. Dr. Cláudio S. Sartori 9-72: A energia potencial gravitacional que se transformou em energia cinética é: rad R K = (4.00 kg – 2.00 kg)(9.80 m/s2)(5.00 m) = 98.0 J. 2 2 Em termos da velocidade comum dos blocos, a rad (1.25 rad / s) (2.50 m) 3.93 m / s . 2 energia cinética do sistema é: (d) rad = R = (2g/R)(1- cos )R = (2g)(1 – cos ), independente de R. 2 1 1 v K ( m1 m2 )v 2 I 9-64: A segunda polia, com metade do diâmetro da 2 2 R primeira, deve ter duas vezes a velocidade angular, e esta é a 1 (0.480 kg m 2 ) 2 v 2 4.00 kg 2.00 kg velocidade angular da lâmina da serra 2 v 12.4 kg. 2 ( 0 . 160 m ) (a) (2(3450 rev/min)) Resolvendo para v, temos: rad / s 0.208 m 75.1 m / s. 98.0 J 30 rev / min 2 v 2.81m / s. 2 (b) rad 2 r 12.4 kg 2 rad / s 0.208 m 4 2 5.43x10 m / s , 30 rev / min 2 rad 2(3450 rev / min) 9-74: (a) 1 K I 2 2 então a força segurando a serragem sobre a lâmina deveria ser 2 11 2 rad / s aproximadamente 500 vezes tão forte quanto a gravidade . (1000 kg)( 0.90 m) 2 3000 rev / min x 22 60 rev / min 2.00 x 107 J . 9-66: Da Tabela (9-2), quantitativamente: 1 2 I A MR 2 , I B MR 2 and I C MR 2 . 2 3 K 2.00 x 107 J 1075 s, Pave 1.86 x 104 W (b) (a) O objeto A possui o menor momento de inércia, pois, dos o qual é aproximadamente 18 min. três objetos dados sua massa é a mais concentrada próxima ao eixo. 9-76: (a) Para o caso que nenhuma energia é perdida, a (b) Por outro lado, o objeto B possui a massa concentrada o altura de recuo h está relacionada com a velocidade v por: mais distante do eixo. v 2 e com o resultado para h dado no Exemplo 9-9, (c) Como Iesfera = 2.5 MR2, a esfera deveria trocar o disco como h = , 2g possuindo o menor quantidade de momento de inércia . 9-68: Utilizando considerações de energia, o sistema adquire tanto energia cinética quanto ocorre a perda em sua energia potencial , mgR. A energia cinética é: 1 1 1 1 1 K I 2 mv 2 I 2 m(R) 2 ( I mR 2 ) 2 . 2 2 2 2 2 Utilizando 1 I mR2 2 2 h = h . 1 M / 2m e resolvendo para , obtemos: (b) Considerando o sistema como um todo, alguma parte da energia potencial inicial da massa transformou-se em energia cinética do cilindro. Considerando apenas a massa, a tensão na corda realizou trabalho sobre a massa, então sua energia total não é conservada . 4g 4g , e . 3R 3R 9-78: (a) Do teorema dos eixos paralelos, o momento de inércia é:Ip = (2/5)MR2 ML2, e 2 R I 9-70: Considerando o sistema de referencia zero da energia 1 . ML 5 L potencial gravitacional como estando no eixo, a energia 2 potencial inicial é nula ( a corda é empacotada círculos tendo o Se R = (0.05) L, a diferença é (2/5)(0.05) = 0.001. 2 eixo como centro ). Quando a corda é desenrolada seu centro (b) (Irod/ML ) = (mrod/3M), o qual é 0.33% quando de massa está a uma distância de R abaixo do eixo. O mrod = (0.01) M. comprimento da corda é 2R e metade desta distância é a M e , posição do centro de massa. Inicialmente toda parte da corda 9-80: Cada lado possui um comprimento a e massa 4 está se movimentando com velocidade 0R, e quando a corda é o momento de inércia de cada lado, relativo a um eixo desenrolada, o cilindro possui uma velocidade angular , então perpendicular ao lado e através do seu centro é: a velocidade da corda é R (a parte superior final da corda 2 possui a mesma velocidade tangencial que a borda do 1 M a 2 Ma . cilindro). Da conservação de energia, e utilizando I = (1/2)MR2 12 4 48 Do Teorema dos Eixos Paralelos, o momento de inércia de para um cilindro uniforme , temos: cada lado relativo ao eixo através do centro do quadrado é: M m M m 2 P 2 2 2 2 2 R 0 R mgR. 4 2 4 2 2 Ma 2 M a Ma 2 . 48 4 2 3 Resolvendo para , temos: 02 (4mg / R ) , ( M 2m ) e a velocidade em qualquer parte da corda é: v = R. 9-82: (a) Do Exercício 9-43, a taxa de perda de energia é: 4 2 I dT resolvendo para o momento de ; T 3 dt Sears &Zemansky – Prof. Dr. Cláudio S. Sartori inércia I em termos da potência P, temos: PT 3 1 4 2 dT / dt 31 3 (5 x10 W )(0.0331 s) 1s I 1.09 x1038 kg m2 . 4 2 4.22 x1013 s I (b) R 5I 2M 5(1.08 x1038 kg m2 ) 9.9 x 103 m 10 km. 30 2(1.4)(1.99) x 10 kg ) R (c) 2R 2 (9.9 x 10 m) 1.9 x 106 m / s 6.3 x 103 c. (0.0331 s ) T (d) M V 3 M 6.9 x 1017 kg / m3 , 3 (4 / 3) R o qual é muito maior que a densidade de uma rocha comum, 14 ordens de grandeza, sendo comparável a densidade de massa nuclear . 9-84: Seguindo o procedimento para se resolver o Exemplo 9-14 (e utilizando-se z como a coordenada ao longo do eixo vertical ), temos: R R2 R 4 4 r( z ) z , dm 2 z 2 dz and dI z dz. h h 2 h4 Então, I dI R 4 2 h 4 h 0 z 4 dz R 4 10 h 4 [ z 5 ]0h 1 R 4 h. 10 O volume de um cone circular é : 1 e sua massa é : 1 R 2 h, e portanto: V R 2 h, 3 3 3 R 2 h 2 3 2 I R MR . 10 3 10