Correlação e Regressão Objetivo • Estudar a relação entre duas variáveis quantitativas Exemplo: – – – – – – Idade e alturas das crianças Tempo de prática de esporte e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade Expectativa de vida e taxa de analfabetismo Vendas e Gasto com publicidade Estudo da relação entre variáveis Investigar a presença ou ausência de relação linear sob dois pontos de vistas. 1. Quantificando a força dessa relação Correlação; 2. Explicitando a forma dessa relação Regressão. – – Representação gráfica das duas variáveis quantitativas: Diagrama de dispersão Exemplo 1: nota da prova e tempo de estudo X: tempo de estudo (em horas) Y: Nota da prova 10 8 Nota Pares de observação (Xi;Yi) Tempo Nota 3,0 4,5 7,0 6,5 2,0 3,7 1,5 4,0 12,0 9,3 Diagrama de dispersão 6 4 2 0 0 5 10 Tempo 15 Exemplo 2: Vendas e gasto com publicidade de loja de confecções X: Gasto com publicidade(em $ mil) Y: Venda (em $ mil) Pares de observação (Xi;Yi) Gasto Venda 3 7 4 14 8 15 12 28 14 32 Vendas Diagrama de dispersão 35 30 25 20 15 10 5 0 0 5 10 Gasto com publicidade 15 Coeficiente de correlação linear É uma medida que avalia o quanto a “nuvem de pontos” no diagrama de dispersão aproxima-se de uma reta. O coeficiente de correlação linear de Person é dado por: Sendo, SX e SY são os desvios padrão de X e Y, respectivamente. Formula alternativa No Exemplo 1: No Exemplo 2 Soma Média Gasto com publicidade 3 4 8 12 14 41 8,2 S2X = 23,2 S2Y = 108,7 Então, r = 0,9648 Vendas 7 14 15 28 32 96 19,2 (X - média(X)) (Y - média(Y) (X - média(X)) (Y - média(Y)) -5,2 -12,2 63,44 -4,2 -5,2 21,84 -0,2 -4,2 0,84 3,8 8,8 33,44 5,8 12,8 74,24 0 0 193,8 SX=4,82 SY=10,42 Propriedades do coeficiente de correlação Propriedades: -1 ≤ r ≤ 1 Classificação da correlação: r = 1, correlação linear positiva e perfeita; r = -1, correlação linear negativa e perfeita; r = 0, inexistência de correlação linear. Exemplo 3: Criminalidade e analfabetismo Considere as duas variáveis abaixo observadas em 50 estados norte-americano (vide dados). X: taxa de analfabetismo Y: taxa de criminalidade Na figura a seguir, temos o diagrama de dispersão de X e Y e podemos notar que, conforme aumenta a taxa de analfabetismo, a taxa de criminalidade tende a aumentar. Nota-se também uma tendência linear. Diagrama de dispersão Calculo da correlação Exemplo 4: Expectativa de vida e analfabetismo Considere as duas variáveis abaixo observadas em 50 estados norte-americanos. (vide dados) Y: expectativa de vida X: taxa de analfabetismo Na figura a seguir, temos o diagrama de dispersão de X e Y e podemos notar que, conforme aumenta a taxa de analfabetismo, a expectativa de vida tende a diminuir. Nota-se também uma tendência linear Diagrama de dispersão Calculo da correlação Análise de regressão A análise de regressão fornece uma função matemática que descreve a relação entre duas ou mais variáveis. A natureza da relação é caracterizada por esta função ou equação de regressão. Esta equação pode ser usada para estimar ou predizer valores futuros de uma variável, com base em valores conhecidos ou supostos, de uma ou mais variáveis relacionadas Modelo matemático versus modelo estatístico Modelo matemático → descreve uma relação entre diferentes variáveis (tipo – Y = a + bX) onde os valores de X estão diretamente associados aos valores de Y. Modelo estatístico → envolve a determinação do melhor modelo ou do modelo que melhor se ajusta aos pontos, e não do modelo exato ou preciso. (Y = a + bX + e, onde e é o erro) Regressão linear simples Objetivo : obter a equação matemática da reta que represente o melhor relacionamento numérico linear ente o conjunto de pares de dados em amostras selecionadas, dos dois conjuntos de variáveis Equação da reta: Yi 0 1 X i i , i 1,2,..., n (1) Regressão linear Simples Onde: • Yi é o i-ésimo valor da variável dependente, ou variável explicada (resposta); • 0 e 1 são os parâmetros (coeficientes de regressão); • Xi é o i-ésimo valor da variável independente, ou variável explicativa (é uma constante conhecida, fixo). • i é o termo do erro aleatório com E(i)=0 e 2(i)= 2; • i e j não são correlacionados (i, j)=0 para todo i,j; i j; (covariância é nula). Covariância (o resultado em qualquer experimento não tem efeito no termo do erro de qualquer outro experimento) Regressão linear simples Os dados são usados para estimar 0 e 1, isto é, ajustar o modelo aos dados, para: • quantificar a relação entre Y e X; • usar a relação para predizer uma nova resposta Y0 para um dado valor de X0 (não incluído no estudo); • calibração – ou capacidade de predição de novas observações, pode ser feita usando uma nova amostra e comparando os valores estimados com os observados. - dado um valor de Y0, para o qual o correspondente valor de X0 é desconhecido, estimar o valor de X0. Característica do modelo 1. Yi é uma v.a.(Yi 0 1 X i i ) 2. E(Yi ) E ( 0 1 X i i ) i 0 1 X i (equação ajustada) 3. 2 (Yi ) 2 ( 0 1 X i i ) 2 ( i ) 2 ( variância constante ) 4. Yi e Yj não são correlacio nados O modelo de regressão (1) mostra que as respostas Yi são oriundas de uma distribuição de probabilidades com média E(Yi) = 0 +1Xi e cujas variâncias são 2, a mesma para todos os valores de X. Além disso, quaisquer duas respostas Yi e Yj não são correlacionadas. A figura mostra a distribuição de Y para vários valores de X. Mostra onde cai a observação Y1. Mostra que o erro é a diferença entre Y1 e E(Y1). Observe que as distribuições de probabilidade apresentam a mesma variabilidade. Significado dos parâmetros do modelo yi = 0 + 1xi y x=1 1 y x 0 x x+1 0 – intercepto, valor da média da distribuição de Y em X=0 1 – inclinação, expressa a taxa de mudança em Y, isto é, é a mudança em Y quando ocorre a mudança de uma unidade em X. Reta Ajustada (método dos mínimos quadrados) Os coeficientes 0 e 1 são calculados da seguinte maneira: 1 e 0 = No exemplo 3: Criminalidade e analfabetismo Reta ajustada : Y : valor predito para taxa de criminalidade X : taxa de analfabetismo Interpretação de 1 : Para um aumento de uma unidade na taxa de analfabetismo (X), a taxa de criminalidade (Y) aumenta, em média, 4,257 unidades Graficamente, temos: No exemplo 4: Expectativa de vida e analfabetismo A reta ajustada: Y : valor predito para a expectativa de vida X : taxa de analfabetismo Interpretação de 1 : Para um aumento de uma unidade na taxa de analfabetismo (X), a expectativa de vida (Y) aumenta, em média, 1,296 anos Exemplo 5: Consumo de cerveja e temperatura X: Consumo de cerveja diário por mil habitantes, em litros Y: Temperatura máxima (ºC) As variáveis foram observadas em nove localidades com as mesmas características demográficas e socioeconômicas Dados Diagrama de dispersão