AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella 1 Sistema Dedutivo: •Sistemas Dedutivos são métodos utilizados na lógica e em outras ciências para se inferir conseqüências lógicas a partir de um conjunto de fórmulas tomadas a priori. •Existem várias formas de se realizar inferências entre esses métodos estão os Sistemas de Deduções Naturais, Métodos dos Tableaux analíticos e Axiomatizações. •Quando um Sistema Dedutivo infere uma fórmula A de uma teoria , escreve-se Ⱶ A, chamado de seqüente e constituído do antecedente (ou hipótese) e do conseqüente (ou conclusão) A. 2 Axiomatização: • O axioma era um importante elemento do método lógico dedutivo dos gregos, tal método era utilizado na apresentação da geometria euclidiana, tratava-se na época de axiomatizar uma teoria, a teoria geométrica. •as axiomatizações foram utilizadas em tentativas de prover um fundamento seguro para a matemática. •Em lógica, porém, compreende-se axiomatização como uma forma lógica de inferência. •uma axiomatização possui dois elementos distintos: axiomas e regras de inferência. 3 Axioma: •Um axioma é aceito como verdade e serve como ponto inicial para dedução e inferências de outras verdades (dependentes de teoria). •Um axioma não é necessariamente uma verdade autoevidente, mas apenas uma expressão lógica formal usada em uma dedução, visando obter resultados mais facilmente. •Axiomatizar um sistema é mostrar que suas inferências podem ser derivadas a partir de um pequeno e bem-definido conjunto de sentenças. 4 Regras de inferência: •As regras de inferência possuem como características: I)Se a Hipótese inicial for verdadeira, então a Conclusão é verdadeira. II) As premissas de um sistema de inferência são regras sem hipóteses. III) Permitem inferir novas fórmulas a partir de formulas já inferidas. •No caso da axiomatização da lógica proposicional clássica será utilizado o Modus Ponens: 5 Modus Ponens: •A partir de A B e A, infere-se B. •O argumento tem duas premissas: -A condição "se - então", nomeadamente que A implica B. -A é verdadeiro. •Destas duas premissas pode ser logicamente concluído que B tem de ser também verdadeiro. EXEMPLO: - Se chover, então fico em casa. - Choveu. - Então fico em casa. 6 Fonte: WIKIPEDIA. Modus Ponens. Disponível em: <http://pt.wikipedia.org/wiki/Modus_ponens>. Acesso em: 21 mar. 2009. Substituição: •A substituição de um átomo p por uma fórmula B em uma fórmula A é representada por A[p := B]. •A definição formal de substituição se dá por indução estrutural sobre a fórmula A, sobre a qual se processa a substituição, da seguinte maneira: 1. p[p := B] = B 2. q[p := B] = q, para q ≠ p. 3. (A) [p:=B]= (A [p:=B]). 4. (A1 A2) [p := B] = (A1 [p := B]) (A2 [p := B]), para {,,} 7 Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, 2006. p. 35. . Substituição: Exemplo: (p (p q))[p := (r s)] = p[p := (r s)] (p q)[p := (r s)] = (r s) (p[p := (r s)] q[p := (r s)]) = (r s) ((r s) q) •Quando uma fórmula B é resultante da substituição de um ou mais átomos da fórmula A, dizemos que B é uma instância da fórmula A. 8 Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, 2006. p. 35. . Dedução, teoremas: • (1) Axiomas da lógica proposicional clássica: p (q p); (2) (p (q r)) ((p q) (p r)); (1) p (q (p q)); (2) (p q ) p ; (3) (p q ) q ; (1) p (p q); (2) q (p q); (3) (p r) ((q r) ((p q) r)); (1) (p q) ((p q) p); (2) p p . 9 Fonte: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, 2006. p. 36 . Dedução, teoremas: • Dedução: uma seqüência de fbf A1, A2 … An tal que cada fbf na seqüência é um axioma ou pode ser obtida das mesmas por meio das regras de inferência. • Teorema: uma fbf A tal que existe uma dedução A1, A2 … An = A . Neste caso escreve-se Ⱶ A . • A axiomatização possui a propriedade da substituição uniforme, isto é, se A é um teorema e se B é uma instância de A, então B também é um teorema 10 Fonte: KAESTNER, Celso A. A. Disponível em: <http://www.dainf.cefetpr.br/~kaestner/Logica/SistemasDedutivos.ppt>. Acesso em: 18 mar. 2009. Dedução, teoremas: • “Pode-se ainda definir o conceito de fórmula dedutível de uma teoria (conjunto de fbf); • Diz-se que A é dedutível a partir de uma teoria se há uma dedução, ou seja seqüência de fbf A1, A2 … An = A tal que cada fbf na seqüência é: 1. uma fbf da teoria ; 2. uma instância de um axioma; 3. pode ser obtida das fórmulas anteriores por meio das regras de inferência;” 11 Fonte: KAESTNER, Celso A. A. Disponível em: <http://www.dainf.cefetpr.br/~kaestner/Logica/SistemasDedutivos.ppt>. Acesso em: 18 mar. 2009. Exemplo de axiomatização: •Dedução do teorema I = A A. • (2), onde p := A, q := A A e r := A. Assim temos: 1. (A ((A A) A)) ((A (A A)) (A A)). • (1), onde p := A, q :=A A.Obtemos assim: 2. A ((A A) A). • Aplicando Modus Ponens 1, 2, obtemos a fórmula 3: 3. ((A (A A)) (A A). • (1) onde p := A e q := A: 4. A (A A). • Aplicando Modus Ponens 3, 4, obtemos a fórmula 5: 5. A A. 12 Fonte: Adaptado de CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, 2006. p. 38. Teorema da dedução: •O teorema da dedução diz que: , A Ⱶ B se e somente se Ⱶ A B. •É capaz de transformar uma dedução que poderia ser complexa em uma dedução bastante simples. •Exemplo: • B= (A B) ((C A) (C B)) • A B, C A, C Ⱶ B. Tomamos como Hipótese as fórmulas: 1–AB 2–CA 3 – C. •Aplicamos agora o Modus Ponens 2,3 e obtemos a fórmula: 4–A •Por fim, aplicamos o Modus Ponens 1,4 e obtemos a fórmula: 5–B 13 Referências: CORRÊA DA SILVA, Flávio Soares; FINGER, Marcelo;VIEIRA DE MELO, Ana Cristina. Lógica para computação. São Paulo: Thomson, 2006. p. 33 – 41. KAESTNER, Celso A. A. Disponível em: <http://www.dainf.cefetpr.br/~kaestner/Logica/SistemasDedutivos.ppt>. Acesso em: 18 mar. 2009. WIKIPEDIA. AXIOMA. Disponível em: <http://pt.wikipedia.org/wiki/Axioma>. Acesso em: 13 mar. 2009. WIKIPEDIA. Modus Ponens. Disponível em: <http://pt.wikipedia.org/wiki/Modus_ponens>. Acesso em: 21 mar. 2009. 14