QUÍMICA PRÉ-VESTIBULAR LIVRO DO PROFESSOR Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br © 2006-2008 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais. I229 IESDE Brasil S.A. / Pré-vestibular / IESDE Brasil S.A. — Curitiba : IESDE Brasil S.A., 2008. [Livro do Professor] 832 p. ISBN: 978-85-387-0577-2 1. Pré-vestibular. 2. Educação. 3. Estudo e Ensino. I. Título. CDD 370.71 Disciplinas Autores Língua Portuguesa Literatura Matemática Física Química Biologia História Geografia Francis Madeira da S. Sales Márcio F. Santiago Calixto Rita de Fátima Bezerra Fábio D’Ávila Danton Pedro dos Santos Feres Fares Haroldo Costa Silva Filho Jayme Andrade Neto Renato Caldas Madeira Rodrigo Piracicaba Costa Cleber Ribeiro Marco Antonio Noronha Vitor M. Saquette Edson Costa P. da Cruz Fernanda Barbosa Fernando Pimentel Hélio Apostolo Rogério Fernandes Jefferson dos Santos da Silva Marcelo Piccinini Rafael F. de Menezes Rogério de Sousa Gonçalves Vanessa Silva Duarte A. R. Vieira Enilson F. Venâncio Felipe Silveira de Souza Fernando Mousquer Produção Projeto e Desenvolvimento Pedagógico Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br O átomo hoje Quanto mais prótons no núcleo mais elétrons tende a haver na eletrosfera, o que torna o átomo mais pesado. Neste módulo, vamos “dissecar” a nossa concepção de átomo. 1900 Dias atuais Imaginemos a eletrosfera em várias camadas, onde se movimentam os elétrons. O átomo As substâncias são constituídas de moléculas, átomos ou íons, e têm como princípio de existência o átomo. O átomo é muito pequeno. Se um átomo fosse deste tamanho, a bolinha da ponta de uma caneta teria 30km de diâmetro. Aliás, uma bolinha de ponta de caneta deve conter uns... 1.000.000.000.000.000.000.000 de átomos. Os átomos são formados de inúmeras partículas. Estudaremos apenas aquelas que interessam ao nosso propósito. Na parte externa do átomo encontram-se partículas infinitamente pequenas chamadas elétrons. Os elétrons possuem carga elétrica negativa e a região onde se movem chama-se eletrosfera. A parte central do átomo é o núcleo constituído de partículas extemamente pequenas: os prótons que têm carga positiva, e os nêutrons que não possuem carga. No interior do núcleo temos os prótons e nêutrons, envoltos por uma camada de partículas w e z. O núcleo é muito menor que a eletrosfera (10 mil vezes menor) e é mantido coeso por uma força nuclear que existe entre suas partículas. Átomo parte central mais densa: núcleo parte externa: eletrosfera EM_V_QUI_007 No núcleo temos: partículas positivas: prótons (p) partículas sem carga: nêutrons (n) Na eletrosfera ou coroa envolvente, temos as partículas elétricas negativas: elétrons (e). Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 1 Átomo eletrizado positivamente (cátion) Nêutron O átomo eletrizado positivamente é aquele que apresenta mais cargas positivas (prótons) do que cargas negativas (elétrons). Para tanto, ele perdeu elétrons. O total de elétrons perdidos é o total de cargas positivas adquiridas. Elétron `` 20 Exemplo: Ca p=20 p=20 e=20 perde 2 elétrons e=18 átomo de cálcio Os átomos em seu estado natural são sempre eletricamente neutros, isto é, o número de cargas positivas são iguais ao número de cargas negativas. p =e p≠e 2 carga +2 O átomo eletrizado negativamente apresenta mais elétrons do que prótons. Portanto, ele ganhou elétrons. O total de elétrons ganhos é o total de cargas negativas adquiridas. 7 Como já vimos, os átomos são formados por um núcleo (parte central) e a eletrosfera (parte periférica). O núcleo, apesar de concentrar praticamente toda a massa do átomo, apresenta um diâmetro cerca de 10 000 vezes menor do que o átomo. Se o átomo fosse o Maracanã, o núcleo seria a bola, no centro do campo. Se o átomo tivesse um diâmetro de 100m, seu núcleo teria diâmetro de 1cm. Os átomos sofrem reações para alcançar uma estabilidade. Estas reações ocorrem por meio de choques, e como o núcleo está protegido, não participa delas. As alterações sofridas por um átomo ocorrem na eletrosfera, ou seja, nos elétrons. Os átomos, para alcançarem a estabilidade, podem perder ou ganhar elétrons, com isso adquirem cargas. Estas espécies, carregadas positivamente ou negativamente, chamamos de íons. Nesse caso: 2 prótons a mais que elétrons Átomo eletrizado negativamente (ânion) `` Íons Cátion de cálcio eletrizado positivamente p=e) mais cargas positivas (neutro Átomos eletricamente neutros n.0 p>n.0 e Ca2+ N Exemplo: p=7 e=7 p=7 ganha 3 e átomo de nitrogênio (neutro e=10 n.0 e>n.0 p p=e) mais cargas negativas perde elétrons N3 – Ânion do nitrogênio eletrizado negativamente 3 prótons a menos que elétrons eletrizado positivamente -3 carga cátion ÍON ÁTOMO ganha elétrons eletrizado negativamente ânion É importante frisar que toda e qualquer alteração no átomo ocorre nos elétrons, os prótons e nêutrons permanecem inalterados. Cu Átomo de cobre Cu+ Cátion de cobre – I Cu2+ Cátion de cobre – II A única diferença entre estas espécies químicas está no número de elétrons. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 Próton Identificação de um átomo Número de massa (A) Vamos estabelecer uma comparação entre a identificação de um indivíduo e um átomo. Cada pessoa tem a sua cédula de identidade com os números do Registro Geral e do Cadastro de Pessoa Física. Cada átomo tem seu número de prótons, nêutrons e elétrons. Átomo de hidrogênio: p = 1, e = 1, n = 0 Número de massa (A) é o número correspondente à soma das quantidades de prótons e de nêutrons existentes no núcleo. A=p+n ou A=Z+n Por exemplo: o átomo de sódio possui 11 prótons e 12 nêutrons no núcleo. Logo, seu número de massa é 23. A=p+n A = 11 + 12 = 23 Representação de “Z” e “A” O número de massa é colocado acima do símbolo do elemento e o número atômico embaixo. A Átomo de hélio: p = 2, e = 2, n = 2 Z E A e Z E ou A EZ e A Z E mais correto 35 Por exemplo: 17C – indica o átomo de cloro de Átomo de carbono: p = 6, e = 6, n = 6 número atômico 17 e número de massa 35. Pelo número atômico, sabemos que este átomo de cloro tem 17 prótons e 17 elétrons. Sendo o número de massa 35, sabemos que: A = p + n 35 = 17 + n n =18. Isótopos São átomos de mesmo número atômico (mesmo elemento) e de números de massa diferentes. `` Exemplo: 1 1 Dessa forma, podemos dizer que a identificação de um átomo está na dependência da quantidade de prótons e nêutrons. Número atômico (Z) EM_V_QUI_007 Número atômico (Z) é o número correspondente à carga nuclear, ou seja, o número de prótons existentes no núcleo. Por exemplo, o átomo de carbono possui 6 prótons no núcleo. Logo, o seu número atômico é 6. p=6 Z=6 H (prótio), 2 3 1 1 H (deutério), H (trítio) Isóbaros Isóbaros são átomos de mesmo número de massa e números atômicos diferentes (elementos diferentes). `` Exemplo: 40 19 K e 40 20 Ca Isótonos Isótonos são átomos que apresentam mesmo número de nêutrons e números atômico e de massa diferentes. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 3 Exemplo: Como você já sabe: A = Z + N , então: N = A – Z 0 17 8 e 9 F 18 N=A-Z N=A-Z N = 17 – 8 = 9 N = 18 – 9 = 9 Espécies isoeletrônicas São átomos ou íons que possuem a mesma quantidade de elétrons. `` Exemplo: A 3+, 12Mg2+, 11Na1+ 13 cátions com 10 elétrons Ne 10 átomo neutro com 10 elétrons F -, 80 -2, 7N 3- 9 ânions com 10 elétrons Estudo da eletrosfera O estudo minucioso da eletrosfera torna-se necessário já que as transformações químicas ocorrem com os elétrons. Na eletrosfera os elétrons distribuem-se em sete camadas (denominadas K, L, M, N, O, P, Q), como as “cascas de uma cebola”. Cada camada pode conter um limite máximo de elétrons, conforme seu “tamanho”: K = 2, L = 8, M = 18, N = 32, O = 32, P = 18, Q = 2 Para a total compreensão dessa região dos átomos, devemos conhecer a caracterização de cada um dos elétrons que compõe uma determinada eletrosfera. Essa caracterização está relacionada à quantidade de energia dos elétrons, que é estudada por intermédio dos números quânticos. Número quântico principal (n) 4 em seu movimento ao redor do núcleo. Pensando nisso, órbitas definidas como as de planetas ao redor do Sol deixaram de ter sentido. As camadas eletrônicas passaram a ser interpretadas como níveis de energia. Cada um desses níveis é definido pelo número quântico principal, que determina a energia do elétron e, com isso, sua distância média com relação ao núcleo. O número quântico principal, representado por n, indica a camada em que o elétron se encontra, e só pode assumir valores inteiros e positivos. Observe: Por volta de 1925, começou uma alteração que mudaria radicalmente a forma de compreender o comportamento dos elétrons ao redor do núcleo. Heisenberg estabeleceu o Princípio da Incerteza, que determina a impossibilidade de se conhecer ao mesmo tempo a velocidade e a posição do elétron Subníveis Cada um dos níveis é decomposto em um determinado número de subníveis, que são regiões que podem acomodar uma quantidade limitada de elétrons. tipo de subnível de energia n.º de elétrons que acomoda s 2 p 6 d 10 f 14 Somados os elétrons alojados nos subníveis de um dado nível, se obtém a quantidade máxima de elétrons que pode ser contida no mesmo. As configurações eletrônicas Para se obter a distribuição dos elétrons em níveis de energia ou camadas para um determinado átomo, os seus elétrons devem ser distribuídos em ordem de energia crescente, nos subníveis, e depois reorganizados em níveis ou camadas. O termo camadas continua a ser usado por fatores históricos e também por facilitar a visualização do modelo atômico. Diagrama de Linus Pauling Foi Linus Pauling quem calculou a ordem de energia dos subníveis e estabeleceu um diagrama visando facilitar a obtenção da configuração eletrônica dos átomos. Até hoje são conhecidas sete camadas eletrônicas, e suas subcamadas estão descritas abaixo, no diagrama de Linus Pauling, onde a ordem crescente de preenchimento dos elétrons está indicado pelas setas: Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 `` níveis deixando para o último subnível o que resta para totalizar os elétrons. subníveis S P D F número máximo de elétrons por níveis K 1 1s L 2 2s 2p M 3 3s 3p 3d N 4 4s 4p 4d 4f 32 O 5 5s 5p 5d 5f 32 P 6 6s 6p 6d Q 7 7s 2 6 2 •• Some os elétrons distribuídos para não ultrapassar o valor do número atômico. `` 8 A distribuição eletrônica para o átomo de sódio (Na) que tem Z = 11 seria obtida da seguinte forma: 18 Z = 11 indica que o sódio no estado neutro possui igual número de cargas positivas e negativas. Portanto, temos 11 elétrons a distribuir. 18 1s2 2s2 2p6 3s1 2 10 Após a distribuição dos elétrons em subníveis, podemos identificar aqueles que possuem mesmo número quântico principal, que indica a que camada pertencem os elétrons. 14 número máximo de elétrons por subníveis Cada subnível é sucessivamente preenchido com o número máximo de elétrons de acordo com a ordem obtida, percorrendo-se as diagonais de cima para baixo. Obtém-se, portanto, a seguinte ordem: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 1s Exemplos: energia crescente camada K: 1s2 = 2 elétrons camada L: 2s2 + 2p6 = 8 elétrons camada M: 3s1 = 1 elétron 11 Na 1s 2 2s 2 2p 6 3s 1 K L M Agora vamos fazer a distribuição eletrônica para o átomo de ferro (Fe) que tem Z = 26. 6d 1s2 2s2 2p6 3s2 3p6 4s2 3d6 camada K: 1s2 = 2 elétrons camada L: 2s2 + 2p6 = 8 elétrons camada M: 3s2 + 3p6 + 3d6 = 14 elétrons Chama-se elétron de diferenciação ou elétron de maior energia o último elétron da distribuição na ordem crescente de energia. Chama-se elétron mais externo o último elétron da distribuição na ordem dos níveis (camadas). EM_V_QUI_007 Regras de distribuição eletrônica •• Por meio do número atômico determine a quantidade de elétrons a serem distribuídos. •• Respeitando a ordem crescente de energia dos subníveis, distribua os elétrons colocando o número máximo em cada subnível, camada N: 4s2 = 2 elétrons 26 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 K L M N M Distribuição eletrônica nos íons A distribuição eletrônica nos íons é semelhante à dos átomos neutros. No entanto, é importante salientar que os elétrons que o átomo irá ganhar ou perder (para se transformar num íon) serão recebidos ou retirados da última camada eletrônica e não do subnível mais energético. `` Exemplo: O átomo de ferro (Z = 26) tem a seguinte distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 ou K-2; L-8; M-14; N-2. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 5 Quando o átomo de ferro perde dois elétrons e se transforma no íon Fe2+, este terá a seguinte distribuição eletrônica: Em todos esses casos foi verificado experimentalmente que o 2.º elétron do subnível s passa para o subnível d. 1s2 2s2 2p6 3s2 3p0 3d6 ou `` K-2; L-8; M-14. Evidentemente, se o átomo de ferro perder três elétrons e se transformar no íon Fe3+, este terá a seguinte distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 3d5 ou K-2; L-8; M-13. Estado normal e estado excitado de um átomo Um átomo está no estado normal ou estado fundamental quando seus elétrons estão em seus níveis mais baixos de energia. Entretanto, os elétrons podem estar em níveis de energia mais elevados e, nesse caso, dizemos que o átomo se encontra em estado excitado ou estado ativado. É o que ocorre, por exemplo, quando os átomos são aquecidos a altas temperaturas ou quando reagem com outros átomos. Quando um átomo está em seu estado normal, a distribuição de seus elétrons segue a ordem crescente de energia do diagrama de Pauling. Quando um átomo está em seu estado excitado, a distribuição de seus elétrons não obedece a ordem crescente de energia do diagrama de Pauling. `` Exemplo: Cr ⇒1s2 2s2 2p6 3s2 3p6 4s2 3d4 (aplicando as regras estudadas). 24 Cr ⇒ ⇒1s2 2s2 2p6 3s2 3p6 4s1 3d5 (distribuição eletrônica real). 24 O modelo atômico atual é um modelo matemático-probabilístico que se baseia em dois princípios: – Princípio da incerteza de Heisenberg: é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante. – Princípio da dualidade da matéria de Louis de Broglie: o elétron apresenta característica DUAL, ou seja, comporta-se como matéria e energia sendo uma partícula-onda. Schrödinger baseado nestes dois princípios criou o conceito de orbital. Orbital: é uma região do espaço, em torno do núcleo, onde há maior probabilidade de se encontrar um elétron. Dirac calculou estas regiões de probabilidade e determinou os quatro números quânticos, que são: principal, secundário, magnético e de spin. Orbitais: os elétrons com diversos valores de momento angular ocupam regiões do espaço como estas. A intensidade do sombreado indica a probabilidade de encontrar um elétron a essa ditância. Exemplo: Distribuição eletrônica de elétrons no átomo de carbono (Z = 6): estado normal: 1s2 2s2 2p2 Distribuições eletrônicas especiais 6 Alguns elementos apresentam distribuição eletrônica diferente da obtida com a aplicação das regras já estudadas. Os mais importantes são o cromo (Z = 24), o cobre (Z = 29), a prata (Z = 47) e o ouro (Z = 79). O modelo de Schrödinger abandonou a ideia de orbitas precisas e substituiu-as por descrições das regiões do espaço (chamadas orbitais) onde é mais provável que se encontrem os elétrons. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 estado excitado: 1s2 2s1 2p3 Representação simplificada da distribuição eletrônica É feita pelo cerne do gás nobre que antecede o elemento em relação ao número atômico. Os gases nobres são: Hélio 2 Neônio 10 Ne 1s2 2s2 2p6 Argônio 18 Ar 1s2 2s2 2p6 3s2 3p6 Criptônio 36 Xenônio 54 Radônio 86 `` assumir os valores 0, 1, 2 e 3, correspondentes às subcamadas s, p, d, f. Subnível s p d f Número quântico secundário ou azimutal ( ) 0 1 2 3 He 1s2 Número quântico magnético (m ) Localiza o elétron na orbital e dá a orientação espacial das orbitais. Kr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 Xe 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 Rn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 Exemplo: Observe abaixo que a distribuição eletrônica dos 10 primeiros elétrons do sódio (Na) é igual à do Ne. Na 11 1s2 2s2 2p6 3s1 Sendo assim indicamos apenas por [Ne] (cerne do neônio) e teremos a representação simplificada da distribuição eletrônica do Na: [Ne] 3s1 Olha como fica a representação simplificada da distribuição eletrônica do mercúrio (Hg): 80 Orbital é a região onde é mais provável encontrar um életron. HG 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d 10 5p6 6s2 4f 14 5d10 Formato das orbitais A orbital s possui forma esférica e uma única orientação. Orbital s (Kr) 6s2 4f 14 5d10 cerne do criptônio Ordem crescente de energia: [Kr] 6s2 4f14 5d10 Ordem geométrica: [Kr] 4f14 5d10 6s2 As orbitais p possuem forma de halteres. 3 orbitais p - 3 orientações: px; py; pz. EM_V_QUI_007 Número quântico secundário ou azimutal ( ) O número quântico azimutal, representado por , especifica a subcamada (indica a energia do elétron no subnível) e, assim, a forma da orbital. Pode Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 7 Orbital px As orbitais são identificadas pelo chamado número quântico magnético (m). Num dado subnível, a orbital central tem o número quântico magnético igual a zero; as orbitais da direita têm m = + 1, + 2, + 3; as da esquerda têm m = - 1, - 2, - 3. s m= 0 p m= Orbital py -1 0 +1 -2 -1 0 +1 +2 -3 -2 -1 0 d m= f m= A representação dos elétrons na orbital se faz por meio de setas. O primeiro elétron é representado por uma seta ascendente ( ↑ ). Princípio de exclusão de Pauli: “Em uma orbital pode haver no máximo dois elétrons, de spin contrários”. Orbital pz Py Pz +1 +2 +3 `` Px Exemplo: Subnível s com 2 elétrons s s correto `` ↑↑ errado Exemplo: Subnível p com 2 elétrons ↑ As orbitais d e f são bem mais complicadas e não serão estudadas. Cada subnível comporta um número variável de orbitais, de acordo com o diagrama energético mais completo. Nesse diagrama, cada orbital é representada simbolicamente por um quadrado ou círculo. Os subníveis (degraus) “s”, “p”, “d”, “f” contêm sucessivamente 1, 3, 5, 7 (sequência de números ímpares) orbitais. p d f 8 errado O elétron de maior energia, chamado elétron de diferenciação, é o último elétron distribuído no preenchimento das orbitais, de acordo com a regra de Hund. É importante lembrar que os átomos terão um certo conjunto de orbitais atômicos independentemente de possuir elétrons ou não, em outras palavras, um orbital atômico não deixa de existir só porque está vazio. Número quântico de spin (S) Indica o sentido de rotação do elétron. Só existem duas possibilidades, dois sentidos de rotação, convencionalmente indicados por – 1 e + 1 . 2 Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 2 EM_V_QUI_007 s ↑ correto A-Z=A–Z A representação dos elétrons na orbital se faz por meio de setas que indicam o spin: por convenção, o primeiro elétron é representado por uma seta ascendente ( ) e corresponde ao spin negativo (S= - 1 ); a seta descendente ( ) corresponde ao spin 2 positivo (S=+ 1 ). 2 3x - 5 - 5 = 2x + 1 - 6 ∴ 3x - 10 = 2x - 5 ∴∴ x = 5 Logo: AA= 3 . 5 - 5 = 10 e AB = 2 . 5 + 1 = 11 1. Complete a tabela: Elemento A Z Sc 45 21 Kr Z + n = 36 + 48 = 84 36 Ni2+ p + n = 28 + 31 = 59 Z = p = 28 N3- p + n = 7 + 7 = 14 Z=p=7 p e n Z = p = 21 Z = p = e = 21 A – p = 45 – 21 = 24 Z = p =36 Z = p = e =36 48 e + 2 = 26 + 2 = 28 26 31 7 p + 3 = 7 + 3 = 10 7 2. Representando os elementos hipoteticamente por: 20 20 21 10 9 11 A B n = 10 n = 11 C n = 10 19 9 D n = 10 22 11 E n = 11 Quais átomos devem ser representados pelo mesmo símbolo? `` a) 14. b) 16. Isóbaros (mesma massa) = A e B. c) 30. Isótopos (mesmo n.0 de prótons) = B e D, C e E. d) 32. Isótonos (mesmo n.0 de neutrons) = A, C e D, B e E. e) 34. 3. Tem-se um átomo A com número atômico 5 e número de massa (3x-5). Este átomo é isótono de um átomo B que apresenta número de massa (2x+1) e um próton a mais que A. Calcule os números de massa. `` Solução: C Se os dois átomos são isótonos, possuem o mesmo número de nêutrons. O número de nêutrons do silício é calculado assim: 28 - 14 = 14 nêutrons. Sendo isótonos, o átomo de enxofre também tem 14 nêutrons. O número de massa do enxofre é a soma do seu número de prótons (16) com o seu número de nêutrons (16). Solução: 3x-5 A EM_V_QUI_007 4. (PUC) O silício, elemento químico mais abundante na natureza depois do oxigênio, tem grande aplicação na indústria eletrônica. Por outro lado, o enxofre é de importância fundamental na obtenção do ácido sulfúrico. Sabendo-se que o átomo 14Si28 é isótono de uma das variedades isotópicas do enxofre, 16S, pode-se afirmar que esse átomo de enxofre tem número de massa: Solução: Aqueles que fazem parte do mesmo elemento químico, ou seja, que apresentam o mesmo número atômico (isótopos), são, B e D, C e E. `` Visão artística dos quarks nos núcleos de átomos de silício. 5 2x+1 B 5+1 5. Faça as distribuições eletrônicas e reagrupe os subníveis segundo as suas camadas: isótonos: a) 20Ca. nA = nB b) 54Xe. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 9 `` 8. Determine a configuração eletrônica do bromo (35Br) tomando-se por base o cerne do gás nobre precedente. Solução: a) 1s2 2s2 2p6 3s2 3p6 4s2 2-8-8-2 `` b)1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 Solução: Br 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5⇒ 2-8-18-18-8 35 cerne do argônio 6. Dê a configuração eletrônica nos subníveis dos íons: 9. Dada a configuração eletrônica de um elemento químico no estado fundamental: [Xe] 6s2 4f14 5d6, dê o seu número atômico. a) 25Mn2+. b) 16S-2. `` Solução: `` a) 25Mn: 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 2 2 6 2 6 Solução: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d 6 54 + 22 = 76 elétrons Z = 76 Mn : 1s 2s 2p 3s 3p 3d 2+ [Ar] 4s2 3d10 4p5 5 10. Dê o número atômico do elemento que possui o elétron diferenciador com os seguintes números quânticos: n = 2, = 1, m = +1, s = - 1 . 2 b)16S: 1s2 2s2 2p6 3s2 3p4 S -2: 1s2 2s2 2p6 3s2 3p6 `` Solução: n = 2, = 1, m = +1, s = - 1 2 7. (Unaerp) O fenômeno da supercondução de eletricidade, descoberto em 1911, voltou a ser objeto da atenção do mundo científico com a constatação de Bednorz e Müller de que materiais cerâmicos podem exibir esse tipo de comportamento, valendo um prêmio Nobel a esses dois físicos em 1987. b) 5 e 1. 11. A luz amarela das lâmpadas de vapor de sódio usadas na iluminação pública é emitida pelo decaimento da energia de elétrons excitados no átomo de sódio. No estado fundamental um certo elétron deste elemento se encontra no segundo nível de energia, num orbital p. Os valores dos números quânticos que podem caracterizar esse elétron são: a) n = 2; = 1; m = 2; s = – 1 . 2 b) n = 2; = 2; m = - 2; s = – 1 . 2 c) n = 2; = 1; m = - 1; s = + 1 . 2 1 d) n = 2; = 0; m = 0; s = + . 2 c) 4 e 2. d) 5 e 3. e) 4 e 3. `` Solução: B Ordem crescente: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d1 `` subnível mais energético: 1 elétron. Ordem geométrica: 1s 2s 2p 3s 3p 3d 4s 4p 4d1 5s2 2 10 2 6 2 6 10 Em camadas: 2) 8) 18) 9) 2) → 5 camadas. 2 6 Solução: C -1 0 +1 Segundo nível: n = 2. Subnível p: = 1. ml = -1 ou 0 ou +1. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 Um dos elementos químicos mais importantes na formulação da cerâmica supercondutora é o ítrio: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d1, o número de camadas e o número de elétrons mais energéticos para o ítrio, serão respectivamente: a) 4 e 1. +1 2p3 logo, 1s2 2s2 2p3 Z = 7. 3. Cruzada. Horizontais: 1. Átomos que apresentam algum tipo de igualdade. 1. a) Escreva as palavras de acordo com os conceitos. •• Partículas que constituem a matéria. 2. Átomos com o mesmo número de nêutrons. 3. Átomos com o mesmo número atômico, mas com número de massa diferentes. 4. O número de prótons de um átomo é o seu número ___. •• Partícula do núcleo do átomo com carga positiva. •• Ciência que estuda as características e o comportamento dos elementos químicos. 5. Átomos com o mesmo número de massa, mas com números atômicos diferentes. Destaque na vertical: Cada uma das partes constituintes da molécula. 1 2 3 4 •• Partícula do átomo com carga negativa. 5 4. (UFF) A tabela seguinte fornece o número de prótons e o número de nêutrons existentes no núcleo de vários átomos. •• Significado grego da palavra átomo. •• Região onde circulam os elétrons. Átomos N.º de prótons N.º de nêutrons b) Agora, preenchendo o diagrama abaixo de acordo com as letras numeradas no exercício anterior irá surgir uma frase. a 34 45 b 35 44 c 33 42 d 34 44 Considerando os dados desta tabela, o átomo isótopo de a e o átomo que tem o mesmo número de massa do átomo a são, respectivamente: a) d e b. b) c e d. c) b e c. d) b e d. e) c e b. 2. Complete a tabela. Elemento A H 1 Fe p e- n 1 26 30 Mn 55 25 a) 21. K 39 19 b) 22. S EM_V_QUI_007 Z 5. (UFRJ) Os átomos X e T são isótopos, os átomos W e T são isóbaros e os átomos X e W são isótonos. Sabendose que o átomo X tem 25 prótons e número de massa 52 e que o átomo T tem 26 nêutrons, o número de elétrons do átomo W é: + 16 2- Ca2+ 16 10 Al3+ 40 20 14 c) 23. d) 24. e) 25. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 11 6. (Unimep) No íon 32S162- encontramos: a) 48 nêutrons. a) número de massa igual a 19. b) 32 prótons. b) 10 nêutrons. c) 16 prótons. c) 10 partículas com carga negativa na eletrosfera. d) número de massa 16. d) nove prótons. e) 32 elétrons. e) um número de elétrons menor que o 27A (UFF) Alguns estudantes de Química, avaliando seus conhecimentos relativos a conceitos básicos para o estudo do átomo, analisam as seguintes afirmativas: I. Átomos isótopos são aqueles que possuem mesmo número atômico e números de massa diferentes. II. O número atômico de um elemento corresponde à soma do número de prótons com o de nêutrons. d) 43 e 41. e) II e V. 11. (FEI) Se os elementos 2x-1A4x e 2x B3x+8 são isóbaros, o número de nêutrons de A e B é, respectivamente: a) 17 e 16. b) 15 e 14. c) 18 e 19. d) 16 e 18. a) 62. 8. (Cesgranrio) Considere os elementos a seguir e assinale a opção correta: K40. b) 58. c) 74. d) 42. II. 8O16. e) 92. III. 18Ar40. 13. (Fuvest) O número de elétrons do cátion X2+ de um elemento X é igual ao número de elétrons do átomo neutro de um gás nobre. Este átomo de gás nobre apresenta número atômico 10 e número de massa 20. O número atômico do elemento X é: IV. 8O17. V. e) 41 e 40. 12. (Mackenzie) A soma dos prótons, elétrons e nêutrons do átomo 2x-2Q4x, que possui 22 nêutrons, é igual a: d) II, III e V. 19 c) 43 e 43. e) 17 e 20. c) II e III. I. Y3a-2 2a-10 Os números de massa de X e Y são, respectivamente: a) 45 e 43. IV. Átomos isóbaros são aqueles que possuem números atômicos diferentes e mesmo número de massa. b) I, IV e V. C 37. 17 VI. 8O18. 12 X3a a+5 b) 45 e 41. Esses estudantes concluem, corretamente, que as afirmativas verdadeiras são as indicadas por: a) I, III e V. . 10. (ETF) Os átomos X e Y são isótopos e apresentam as seguintes características: III. O número de massa de um átomo, em particular, é a soma do número de prótons com o de elétrons. V. Átomos isótonos são aqueles que apresentam números atômicos diferentes, números de massa diferentes e mesmo número de nêutrons. 3+ 13 VII.20Ca40. a) 8. a) I e III são isótopos; II, IV e VI são isóbaros. b) 10. b) III e VII são isóbaros; V e VII são isótonos. c) 12. c) II, IV e VI são isótopos; III e VII são isótonos. d) 18. d) II e III são isótonos; IV e VI são isóbaros. e) 20. e) II e IV são isótonos; V e VII são isóbaros. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 7. 9. (Mackenzie) É incorreto afirmar que 19F9 1- apresenta: 14. (UERJ) Há 100 anos, foi anunciada ao mundo inteiro a descoberta do elétron, o que provocou uma verdadeira “revolução” na ciência. Essa descoberta proporcionou à humanidade, mais tarde, a fabricação de aparelhos eletroeletrônicos, que utilizam inúmeras fiações de cobre. A alternativa que indica corretamente o número de elétrons contido na espécie química 29Cu2+ é: a) 25. b) 27. d) 1s2 2s2 2p6 3s2 3p6 4s2 3d2. e) 1s2 2s2 2p6 3s2 3p6 3d4. 19. (PUC) Vanádio (23V), elemento de transição, constitui componente importante do aço para produzir um tipo de liga que melhora consideravelmente a tenacidade, resistência mecânica e corrosão do ferro. Quantos elétrons há no subnível 3d da configuração eletrônica do vanádio? a) 1. c) 31. b) 2. d) 33. 15. (Cesgranrio) A distribuição eletrônica do átomo 56Fe26, em camadas é: a) 1s2 2s2 2p6 3s2 3p6 4s2 3d6. b) 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2. c) 3. d) 4. e) 5. 20. (Fuvest) A seguir são mostradas quatro configurações eletrônicas. c) K - 2 L - 8 M - 16. I. 1s2 2s2 2p6. d) K - 2 L - 8 M - 14 N - 2. II. 1s2 2s2 2p6 3s2. e) K - 2 L - 8 M - 18 N - 18 O - 8 P - 2. III. 1s2 2s2 2p6 3s2 3p5. 16. (Fuvest) Considere os seguintes elementos e seus respectivos números atômicos: IV. 1s2 2s2 2p6 3s2 3p6. I. Na (11). Qual das configurações corresponde: a) a cada um dos átomos C , Mg, Ne? II. Ca (20). b) a cada um dos íons C 1-, K1+, A III. Ni (28). IV. Al (13). Dentre eles, apresenta (ou apresentam) elétrons no subnível d de suas configurações eletrônicas apenas: a) I e IV. b) III. ? 3+ [Números atômicos: Ne = 10; Mg = 12; A = 13; C = 17; K = 19] 21. (PUC) As respectivas distribuições eletrônicas do último nível das espécies químicas K, K+, K2+ só podem ser: [Dado: K (Z = 19)] a) 4s0 4s1 4s2. b) 4s1 3s2 3p6 3s2 3p5. c) II. c) 4s1 4s2 4s2 4p1. d) II e III. d) 4s2 4s1 4s2 4p6. e) II e IV e) 4s1 4s2 4s3. 17. (UEL) Quantos prótons há no íon X3+ de configuração 1s2 2s2 2p6 3s2 3p6 3d10 ? a) 25. 22. (UFMG) Na crosta terrestre, o segundo elemento mais abundante, em massa, tem, no estado fundamental, a seguinte configuração eletrônica: d) 51. nível 1: completo; nível 2: completo; nível 3: 4 elétrons. A alternativa que indica corretamente esse elemento é: a) Alumínio (Z = 13). e) 56. b) Ferro (Z = 26). b) 28. c) 31. 18. (Cesgranrio) A configuração eletrônica do íon Ca2+ (Z = 20) é: EM_V_QUI_007 c) 1s2 2s2 2p6 3s2 3p6. a) 1s 2s 2p 3s 3p . 2 2 6 2 4 c) Nitrogênio (Z = 7). d) Oxigênio (Z = 8). e) Silício (Z = 14). b) 1s2 2s2 2p6 3s2 3p6 4s2. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 13 29 23. (UEBA) Um átomo X é isóbaro de 13 Y e possui 14 nêutrons. O número de elétrons, no último nível, que o átomo X possui é: a) 7. b) somente I e III. c) somente I e IV. b) 13. d) somente II e III. c) 6. e) somente II e IV. d) 5. 28. (Cesgranrio) Assinale a opção que contraria a regra de Hund. e) 4. 24. (UNESA) O cátion trivalente do cobalto (Z = 27) apresenta, nos níveis, a seguinte distribuição eletrônica: a) 2, 8, 15, 2. a) b) c) b) 2, 8, 8, 8, 1. d) c) 2, 8, 12, 2. e) e) 2, 8, 14. 25. (UFMA) O último elétron de um átomo apresenta o seguinte conjunto de números quânticos: n = 3, = 1, m = 0, s = 1 . Por convenção, o primeiro elétron a 2 ocupar um orbital possui número quântico de spin igual a - 1 . Calcule o número atômico desse átomo. 2 26. (UERJ) A luz amarela das lâmpadas de vapor de sódio usadas na iluminação pública é emitida pelo decaimento da energia de elétrons excitados no átomo de sódio. No estado fundamental um certo elétron deste elemento se encontra no segundo nível de energia, num orbital p. Os valores dos números quânticos que podem caracterizar esse elétron são: a) n = 2; = 1; m = 2; s = – 1 . 2 b) n = 2; = 2; m = - 2; s = – 1 . 2 c) n = 2; = 1; m = - 1; s = + 1 . 2 d) n = 2; = 0; m = 0; s = + 1 . 2 27. (UGF) A respeito da estrutura do átomo, considere as seguintes afirmações. I. O número quântico principal (n) é um número inteiro que identifica os níveis ou camadas de elétrons. 29. (Cefet) Dentre os conjuntos a seguir, que representam os números quânticos n, e m, o único que não está correto é: a) 4, 1, 0. b) 2, 0, 0. c) 5, 2, -2. d) 6, 1, +1. e) 3, 2, -3. 30. (Uespi) Qual a afirmativa correta. a) O número máximo de elétrons f no segundo nível de energia é 14. b) Um elétron 2s está num nível de energia mais alto do que um 2p. c) O quarto nível de energia (n = 4) poderá ter no máximo 18 elétrons. d) Dos orbitais 2px, 2py e 2pz estão no mesmo nível de energia. e) A estrutura fundamental do átomo de potássio (Z = 19) é 1s2 2s2 2p6 2d8 3s1. 31. (PUC) Os números quânticos principal, secundário e magnético do segundo elétron em 3p são, respectivamente: II. Um orbital está associado ao movimento de rotação de um elétron e é identificado pelo número quântico “spin”. a) 2, 0, 0. III. Os subníveis energéticos são identificados pelo número quântico secundário ( ), que assume os valores 0, 1, 2 e 3. c) 3, 1, 0. IV. Os elétrons descrevem movimento de rotação chamado “spin”, que é identificado pelo número quântico de “spin” (s), com valores de - até + . b) 3, 1, -1. d) 2, 1, 0. e) 3, 0, 1. 32. (Osec) O conjunto de números quânticos para o elétron do nível N representado no esquema Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 d) 2, 8, 17. 14 São corretas as afirmações: a) somente I e II. c) 16. d) 18. pode ser: a) n = 5, = 2, m = -1, s = + 1 . 2 1 b) n = 4, = 2, m = -1, s = – . 2 c) n = 5, = 3, m = +1, s = + 1 . 2 d) n = 4, = 2, m = +1, s = + 1 . 2 33. (Cefet) O último elétron distribuído na configuração eletrônica de um átomo neutro, no estado fundamental, possui o seguinte conjunto de números quânticos: n = 4; = 1; m = +1 e s = + 1 . 2 Sabendo-se que esse átomo possui número de massa igual a 84 e que, por convenção, o primeiro elétron a ocupar um orbital possui, número quântico de spin igual a – 1 , o número de nêutrons existentes no núcleo 2 desse átomo é: a) 48. b) 84. e) 20. 2. (PUC) Examine as proposições abaixo. I. O íon e o átomo são isótopos porque têm igual número de elétrons. e II. Os isóbaros cas semelhantes. III. têm propriedades quími- e são átomos isótonos; têm igual número de massa. É possível afirmar que somente: a) I é correta. b) II é correta. c) III é correta. d) I e II são corretas. e) II e III são corretas. 3. (PUC) O número atômico do elemento X é 30. Os íons X2+ e Y3- são isoeletrônicos. Identifique a opção correta para o número atômico de Y. c) 36. d) 45. a) 33. e) 33. 34. (UECE) Considere três átomos, A, B e C. Os átomos A e C são isótopos; os átomos B e C são isóbaros e os átomos A e B são isótonos. Sabendo que o átomo A tem 20 prótons e número de massa 41 e que o átomo C tem 22 nêutrons, os números quânticos do elétron mais energético do átomo B são: a) n = 3; = 0; m = +2; s = – 1 . 2 b) n = 3; = 2; m = 0; s = – 1 . 2 c) n = 3; = 2; m = -2; s = – 1 . 2 d) n = 3; = 2; m = -1; s = + 1 . 2 b) 30. c) 25. d) 31. e) 28. 4. (Fatec) Os íons Ca2+ e Pb2+ possuem: [Dados os números atômicos: Ca = 20 e Pb = 82] a) mesmo número de prótons e elétrons. b) mesmo número de prótons e nêutrons. c) mesma carga nuclear e diferentes massas atômicas. d) igual soma de número de prótons e de nêutrons. e) igual diferença entre número de prótons e elétrons. 5. (PUC) Dados três átomos A, B e C notamos que: 1. (PUC) A água pesada, utilizada em certos tipos de reatores nucleares, é composta por dois átomos de deutério (número de massa 2) e pelo isótopo 16 de oxigênio. O número total de nêutrons na molécula da água pesada é: EM_V_QUI_007 [Dados: H (Z = 1 ) e O (Z = 8)] a) 10. b) 12. A e B são isótopos, A e C são isótonos e, B e C são isóbaros. Sabemos ainda que: a soma dos números de prótons existentes em A, B e C é 79, a soma dos números de nêutrons existentes em A, B e C é 88 e o número de massa de A é 55. Consequentemente podemos concluir que os átomos A, B e C têm, respectivamente: Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 15 N.º atômicos N.º de massa a) 26 / 26 / 27 55 / 56 / 56 b) 25 / 25 / 29 55 / 59 / 59 c) 24 / 24 / 31 55 / 62 / 62 d) 27 / 27 / 25 55 / 53 / 53 e) 28 / 28 / 23 55 / 50 / 50 6. (Mackenzie) Um certo átomo neutro M tem número atômico igual a x e número de massa igual a y. O número de elétrons no íon M3+ é igual a: a) x + 3. (HARTWIG, D. R. et al. Química Geral e Inorgânica. São Paulo: b) (x + y) - 3. Scipione, 1999. Adaptado.) c) y - 3. d) x - 3. e) x. 7. (PUC) Têm-se os seguintes átomos e íons genéricos: São, respectivamente, isoeletrônicos, isótopos, isóbaros, isótonos e pertencem ao mesmo elemento químico os seguintes pares: a) B1+ e E2+, A e D, C e F, B e E, A e D. b) B1+ e E2+, C e F, A e D, C e B, B e D. c) A1+ e F, B e C, C e E, B e D, A e D. b) igual a zero, maior que zero. c) diferente de zero, igual a zero. d) diferente de zero, menor que zero. 10. (UFPE) A água contendo isótopos 2H é denominada “água pesada”, porque a molécula 2H2 16O quando comparada com a molécula 1H2 16O possui: d) A1+ e E2+, A e D, C e F, B e E, A e D. a) maior número de nêutrons. e) C e F, A e D, B e E, A e F, B e C. b) maior número de prótons. 8. (PUC) Os fenômenos isotopia, isobaria e alotropia são representados respectivamente pelos exemplos: isótopos isóbaros alótropos b) . c) . d) . e) c) maior número de elétrons. d) menor número de elétrons. e) menor número de prótons. . a) . 11. (PUC - adap.) Datação por carbono-14. O C-14 resulta da absorção contínua dos nêutrons dos raios cósmicos pelos átomos de nitrogênio nas altas camadas da atmosfera. Esse isótopo radioativo do carbono se combina com o oxigênio, formando o CO2, que é absorvido pelas plantas. Fósseis de madeira, papiros e animais contêm C-14, cuja meia vida é de 5 600 anos. Isso significa que, a cada 5 600 anos, a atividade do C-14 é reduzida à metade. Medindo-se a proporção de C-14 que ainda existe nesses materiais é possível saber a “idade” deles. Foi assim, por exemplo, que se determinou a idade dos Pergaminhos do Mar Morto. EM_V_QUI_007 9. (UERJ) Observe os esquemas abaixo, que representam experimentos envolvendo raios catódicos. 16 Desses experimentos resultou a descoberta de uma partícula subatômica. As propriedades massa e carga elétrica dessa partícula apresentam, respectivamente, a seguinte caracterização: a) igual a zero, igual a zero. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br Alexandre Yelis. Alexandre Yelis. Autor desconhecido. d) A energia de ionização de II é menor que a de I. e) I e II representam eletrosferas de elementos diferentes. 15. (FGV) Um átomo com 18 elétrons no penúltimo nível energético pode ter número atômico: a) 2. b) 8. c) 18. d) 28. e) 30. Sobre o carbono–14 que é um isótopo radioativo do carbono–12, é correto afirmar que: a) tem maior número de elétrons que o carbono–12. b) sua ação radioativa dura 14 anos. c) tem maior número de prótons que o carbono–12. I. Na+ 1s2 2s2 2p5 3s1. II. K 1s2 2s2 2p6 3s2 3p6 4s1 4p0. III. C - 1s2 2s2 2p6 3s2 3p6. d) tem maior número de camadas eletrônicas que o carbono–12. IV. F+ 1s2 2s2 2p4. V. C 1s2 2s2 2p1 3p1. e) tem maior número de nêutrons que o carbono–12. Indique as que estão no estado fundamental. a) I, II e IV. 12. (Mackenzie) Se o número total de elétrons no íon [M(H2O)4]2+ é igual a 50, então o número atômico de M é: [Dados: H (Z = 1 ) e O (Z = 8)] a) 10. b) I, III e IV. c) I, III e V. d) I, IV e V. e) II, III e IV. b) 40. 17. (UEL) Considere as afirmações a seguir. c) 8. I. O elemento químico de número atômico 30 tem 3 elétrons de valência. d) 42. e) 12. 13. (Cesgranrio) Os átomos 3x – 5Q e R são isótopos. O átomo 6xR tem 44 nêutrons. Qual a distribuição eletrônica de Q em níveis e subníveis de energia? 6x 14. (ITA) Com relação às duas configurações eletrônicas de um mesmo átomo: I. 1s2 2s2 2p6 3s1. II. 1s2 2s2 2p6 6s1. Identifique a alternativa falsa. a) É necessário fornecer energia para passar de I para II. b) A passagem de II para I emite radiação eletromagnética. EM_V_QUI_007 16. (UFRN) Nas distribuições eletrônicas das espécies químicas abaixo: c) I representa a configuração eletrônica de um átomo de sódio não excitado. II. Na configuração eletrônica do elemento químico com número atômico 26 há 6 elétrons no subnível 3d. III. 3s2 3p3 corresponde à configuração eletrônica dos elétrons de valência do elemento químico de número atômico 35. IV. Na configuração eletrônica do elemento químico de número atômico 21 há 4 níveis energéticos. Estão corretas somente. a) I e II. b) I e III. c) II e III. d) II e IV. e) III e IV. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 17 18. (Mackenzie) O número de elétrons na camada de valência de um átomo que apresenta número de massa igual a 40 e 22 partículas neutras, é: a) 2. e) a passagem de A para B envolve a perda de um elétron. 22. (Unirio) A configuração eletrônica para o V2+ (Z = 23) é: b) 3. a) 1s2 2s2 2p6 3s2 4s2 3d1. c) 4. b) 1s2 2s2 2p6 3s2 3p6 3d3. d) 6. c) 1s2 2s2 2p6 3s2 3p6 3d1 4s1. e) 8. d) 1s2 2s2 2p6 3s2 4s2 3d6 4p3. 19. (FEI) Em relação ao íon Mg de número atômico 12 e número de massa 24, assinale a alternativa correta. 2+ a) Tem 12 elétrons. b) Tem 10 neutrons. c) Tem 10 prótons. d) Tem configuração eletrônica 1s2 2s2 2p6 3s2. e) Tem configuração eletrônica idêntica ao íon Na+ de número atômico 11. 20. (UFRN) Considere o diagrama abaixo, de níveis de energia para o átomo de hidrogênio: n (n.º quântico principal) e) 1s2 2s2 2p6 3s2 3p6 4s2 3d3. 23. (Unirio) “Os implantes dentários estão mais seguros no Brasil e já atendem às normas internacionais de qualidade. O grande salto de qualidade aconteceu no processo de confecção dos parafusos e pinos de titânio, que compõem as próteses. Feitas com ligas de titânio, essas próteses são usadas para fixar coroas dentárias, aparelhos ortodônticos e dentaduras, nos ossos da mandíbula e do maxilar.” (Jornal do Brasil, out. 1996.) Considerando que o número atômico do titânio é 22, sua configuração eletrônica será: a) 1s2 2s2 2p6 3s2 3p3. b) 1s2 2s2 2p6 3s2 3p5. c) 1s2 2s2 2p6 3s2 3p6 4s2. d) 1s2 2s2 2p6 3s2 3p6 4s2 3d2. e) 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6. As transições em que ocorre apenas absorção de energia são: a) I, II, III e IV. b) III e IV. 21. (ITA) No esquema a seguir, encontramos duas distribuições eletrônicas de um mesmo átomo neutro. B 1s2 2s1 2p1 A seu respeito é correto afirmar que: a) A é a configuração ativada. b) B é a configuração normal (fundamental). c) A passagem de A para B libera energia na forma de ondas eletromagnéticas. d) a passagem de A para B absorve energia. 25. (Unirio) Um dos mais graves problemas de poluição ambiental na Baía de Guanabara é provocado pelos rejeitos industriais contendo metais pesados, como o cobre, o zinco e o cromo, que podem provocar náuseas, anemia e doenças hepáticas. As distribuições eletrônicas desses metais são, respectivamente: [Dados: Ar (Z = 18); Cu (Z = 29); Zn (Z = 30); Cr (Z = 24)] a) [Ar] 4s1 3d5, [Ar] 4s2 3d9, [Ar] 4s2 3d10. b) [Ar] 4s1 3d10, [Ar] 4s2 3d9, [Ar] 4s2 3d10. c) [Ar] 4s1 3d10, [Ar] 4s2 3d10, [Ar] 4s1 3d5. d) [Ar] 4s2 3d4, [Ar] 4s2 3d9, [Ar] 4s2 3d10. e) [Ar] 4s2 3d10, [Ar] 4s1 3d10, [Ar] 4s1 3d5. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 d) I e III. 18 a) Qual é a distribuição eletrônica do cátion A? b) Quantos elétrons foram perdidos pelo átomo A, para se transformar em cátion, e em qual subnível houve essa perda? c) I e II. A 1s2 2s2 24. O átomo A tem número atômico igual a 12. O cátion desse átomo é isoeletrônico ao íon B+3, cujo átomo B tem número atômico 13. 26. (UFF) Considere os casos: 08.A energia do elétron que ocupa o subnível 2p é 2 + 1 = 3. n m I. 3 2 -2 II. 3 1 0 III. 3 0 -1 IV. 3 2 0 V. 3 3 -2 Destas designações para estados quânticos, as que não descrevem um estado característico (permitido) para um elétron num átomo são: a) I e IV. b) I e V. 16.A transferência do elétron do subnível 2s para o subnível 2p ocorre com aumento de energia. 32.O carbono deixa de ser bivalente e torna-se tetravalente ao ficar com quatro orbitais incompletos. Soma ( ) 29. (UFF) O princípio de exclusão de Pauling estabelece que: a) A posição e a velocidade de um elétron não podem ser determinadas simultaneamente. b) Elétrons em orbitais atômicos possuem spins paralelos. c) A velocidade de toda radiação eletromagnética é igual a velocidade da luz. c) II e III d) III e IV. d) Dois elétrons em um mesmo átomo não podem apresentar os quatro números quânticos iguais. e) III e V. 27. (Unirio) Os sais de Cr6+ são, em geral, solúveis no pH biológico e, portanto, têm fácil penetração. Daí a sua toxicidade para os seres humanos. Por outro lado, os compostos de Cr3+ são pouco solúveis nesse pH, o que resulta em dificuldade de passar para o interior das células. Indique a opção que corresponde à configuração eletrônica do íon Cr3+. [Dados: Ar (Z = 18); Cr (Z = 24)] a) [Ar] 4s2 3d1. b) [Ar] 3d2. e) Numa dada subcamada que contém mais de um orbital, os elétrons são distribuídos sobre os orbitais disponíveis, com seus spins na mesma direção. 30. (ITA) O número máximo de orbitais atômicos correspondentes ao número quântico principal n é: a) n. b) 2n. c) 2n + 1. d) n2. c) [Ar] 3d3. e) 2n2. d) [Ar] 4s2 3d4. e) [Ar] 4s1 3d5. 28. (RGC) Sabendo-se que a energia do elétron é o resultado da soma das energias do nível e do subnível que ocupa, podemos afirmar, observando os diagramas de Linus Pauling para o carbono nos estados normal, natural ou fundamental e excitado ou ativado, o seguinte: 31. (ITA) O número máximo de elétrons num nível de energia de número quântico n é: a) n2. b) 2n2. c) n2/2. d) n(n + 1). e) n(n – 1). 32. (ITA) O número máximo de elétrons num subnível de energia de número quântico secundário é: a) 2 + 1. b) 2( + 1). EM_V_QUI_007 01.O carbono no estado excitado é mais energético do que o carbono no estado normal. 02.O subnível p é mais energético do que o subnível s. 04.A energia do elétron que ocupa o subnível 2s é 2 + 0 = 2. c) 2(2 + 1). d) ( + 1). e) ( + 1)/2. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 19 33. (UECE) A distribuição eletrônica do átomo de molibdênio, 42Mo (que não segue o diagrama de Linus Pauling), é: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d5. O conjunto de números quânticos para o 5.º elétron do subnível 2p6 é dado por: n = 2, = 1, m = 0 e s = – 1 . Segundo esse modelo, o conjunto dos números 2 quânticos para o 8.º elétron do 3d10 é: a) 3, 2, -1, – 1 . 2 b) 3, 2, 0, – 1 . 2 c) 3, 2, -2, + 1 . 2 d) 3, 2, +1, – 1 . 2 e) 3, 2, 0, + 1 . 2 34. (ITA - adap.) Os materiais se comportam de várias maneiras, sob campos magnéticos. Os diamagnéticos, como o alumínio e o cobre, os repelem, afastando as linhas de campo. Os paramagnéticos se comportam quase como o ar. Os ferromagnéticos concentram o campo, atuando como condutores magnéticos. 36. Um cátion X3+ possui o seguinte conjunto de números quânticos para o seu elétron mais energético: n = 3, = 2, m = +2, s = - 1 . Indique o número atômico 2 do elemento X. • diamagnéticos (todos orbitais completos); • paramagnéticos (pelo menos um orbital incompleto); • ferromagnéticos: Fe, Co, Ni. A partir dessas informações responda a pergunta abaixo. Dois elementos diferentes A e B têm o último elétron de seus átomos (elétron de diferenciação) com os seguintes números quânticos: n = 3; = 2; m = 2. Sabendo que A é paramagnético e B é diamagnético, quais os seus números atômicos? 35. (Unirio) “Um grupo de defesa do meio ambiente afirma que as barbatanas de tubarão – consideradas uma iguaria na Ásia – podem conter quantidades perigosas de mercúrio até 42 vezes maiores do que os limites considerados seguros para o consumo humano.” (Disponível em: <www.bbc.co.uk>) Uma das formas iônicas do mercúrio metabolizado pelo organismo animal é o cátion Hg2+. Nesse sentido, a opção que contém a configuração eletrônica correta deste cátion é: [Dados: Xe (Z = 54); Hg (Z = 80). a) [Xe] 4f14 5d10 6s2. b) [Xe] 4f14 5d10. d) [Xe] 4f12 5d9. e) [Xe] 4f14 5d8 6s2. 20 Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 c) [Xe] 4f12 5d10 6s2. 3. 1. isoátomos; 2. isótonos; 1. 3. isótopos; a) átomo/ próton/ química/ elétron/ indivisível/ eletrosfera. b) Cada elemento químico é identificado pelo seu número atômico. 2. 5. isóbaros. 4. A 5. D Elemento A Z p e n 6. C H 1 1 1 1 0 7. Fe 56 26 26 26 30 Mn 55 25 25 25 30 8. B K+ 39 19 19 18 20 S2- 32 16 16 18 16 Al3+ 27 13 13 10 14 11. A Ca 40 20 20 18 20 12. B 2+ EM_V_QUI_007 4. atômico; B 9. E 10. A 13. C 14. B 15. D Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 21 16. B 14. E 17. C 15. E 18. C 16. E 19. C 17. D 20. 18. E 19. E a) C = III; Mg = II; Ne = I. b) C 1- = IV; K1+ = IV; A 3+ = I. 20. C 21. B 21. D 22. E 22. B 23. D 23. D 24. E 24. 25. Z = 17. a) 1s2 2s2 2p6. 26. C b) Houve uma perda de dois elétrons, os quais saíram do subnível 3s. 27. B 25. C 28. E 26. E 29. E 27. C 30. D 28. Soma: 63. 31. C 29. D 32. D 30. D 33. A 31. B 34. C 32. C 33. B 34. A (Z = 25); B (Z = 30). 35. B 1. A 36. Z = 26. 2. B 3. C 4. E 5. A 6. D 7. A 8. E 9. D 10. A 11. E 13. Q (Z = 34). 22 Distribuição em subníveis: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p4; distribuição em níveis: 2 – 8 – 18 - 6. Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br EM_V_QUI_007 12. E EM_V_QUI_007 Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br 23 EM_V_QUI_007 24 Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br