Aula Inaugural - Concurseiro 24 Horas

Propaganda
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Olá, meu povo!
Sejam bem vindos ao novíssimo curso de Raciocínio Lógico
preparatório para o concurso de Auditor-Fiscal do Trabalho (AFT)
do Ministério do Trabalho e Emprego (MTE). Antes de iniciar nossos
trabalhos, gostaria de me apresentar.
Para aqueles que ainda não me conhecem, meu nome é Paulo
Henrique, PH para os íntimos, sou professor de Raciocínio Lógico e
Matemática de diversos cursos (online e presencial) pelo país, além
de
possuir
um
blog
de
Raciocínio
Lógico
(http://beijonopapaienamamae.blogspot.com).
Sou servidor público federal, Analista Tributário da Receita Federal
do Brasil, aprovado no concurso de 2006. Atualmente, resido em
João Pessoa, porém passei 7 maravilhosos anos de minha vida em
Porto Velho/Rondônia (um abraço carinhoso aos amigos de lá!),
onde conheci o Fernando Miguel (graaande FM), jogador meia-boca
de futebol, mas um grande parceiro, que me convidou para esse
novo desafio.
Sou cearense, casado (sorry, ladies! :-D), pai de 2 filhos (meio
aborre/adolescentes), adoro futebol (junto com meu Mengão e o
Tricolor de Aço!) e, principalmente, amo essa disciplina que tantos
odeiam (se alguém está nesse rol, prepare-se para deixar de sêlo).
Assim, a partir de hoje, assumamos um pacto: vocês esquecem
qualquer trava/medo/pânico/ojeriza que tenham pelo Raciocínio
Lógico (ou somente RL) e eu farei tudo o que tiver ao meu alcance
para vocês lograrem êxito nesse concurso! Combinado?
Bom, chega de lenga-lenga e vamos começar a falar mais sobre o
nosso concurso. Para tristeza de uns e alegria de poucos, o MTE
resolveu fazer uma mudança drástica: trocou a banca examinadora
de seu concurso. Saiu da Escola Superior de Administração
Fazendária (Esaf), que tnha realizado seus últimos concursos e
passou a trabalhar com o Cespe/UnB.
E o que isso acarretou? Logo de sopetão, o conteúdo programático
é totalmente diferente do que foi cobrado no ultimo concurso.
Prof. Paulo Henrique (PH)
[email protected]
1
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Depois, o estilo das bancas também muda. E, nesse caso
específico, uma vantagem para nós.
Explico: a Esaf sempre monta um conteúdo programático
enooooorme, cobrando, além de RL, Matemática, Matemática
Financeira e Estatística. Agora, o Cespe entra apenas com a parte
de RL e Matemática.
E não é só isso! O conteúdo cobrado no edital é o MESMO que ele
cobra nos últimos anos, sem tirar nem por! Ou seja, temos uma
vasta coleção de questões, de todos os tipos, tamanhos, gostos e
cores, para traçarmos uma ‘linha de pensamento’ de como a banca
gosta de atuar.
PH (olha a intimidade…), vou tirar de letra então!!!
Calma que rapadura é doce mas não é mole!!! O Cespe é, junto
com a própria Esaf e a FCC, uma das bancas mais ‘pesadas’ quando
se fala em RL. Traz questões extensas, cheia de pegadinhas,
principalmente por se tratar de questões tipo Verdadeiro/Falso.
O grande objetivo desse curso é prepará-los, tendo como base a
resolução de questões, para que, na hora da prova, conhecendo o
ESTILO da banca, vocês tenham plena capacidade de fazer uma
prova perfeita.
Agora,
vamos
conhecer
programático, ok?
e
‘destrinchar’
nosso
conteúdo
RACIOCÍNIO LÓGICO
1 Estruturas lógicas.
2 Lógica de argumentação: analogias, inferências, deduções e
conclusões.
3 Lógica sentencial (ou proposicional).
3.1 Proposições simples e compostas.
3.2 Tabelas-verdade.
3.3 Equivalências.
Prof. Paulo Henrique (PH)
[email protected]
2
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
3.4 Leis de De Morgan.
3.5 Diagramas lógicos.
4 Lógica de primeira ordem.
5 Princípios de contagem e probabilidade.
6 Operações com conjuntos.
7 Raciocínio lógico envolvendo problemas aritméticos, geométricos
e matriciais.
Nosso curso será dividido assim:
Aula
Aula 00
Aula 01
Aula 02
Aula 03
Aula 04
Aula 05
Aula 06
Aula 07
Assunto
Introdução
3 Lógica sentencial (ou proposicional).
3.1 Proposições simples e compostas.
3.2 Tabelas-verdade.
3.3 Equivalências.
3.4 Leis de De Morgan.
4 Lógica de primeira ordem.
======= Parte I =======
3 Lógica sentencial (ou proposicional).
3.1 Proposições simples e compostas.
3.2 Tabelas-verdade.
3.3 Equivalências.
3.4 Leis de De Morgan.
4 Lógica de primeira ordem.
======= Parte II =======
3.5 Diagramas lógicos.
1 Estruturas lógicas.
2 Lógica de argumentação: analogias,
inferências, deduções e conclusões.
5 Princípios de contagem e probabilidade.
6 Operações com conjuntos.
7 Raciocínio lógico envolvendo problemas
aritméticos, geométricos e matriciais.
Simulado Final (comentado)
Prof. Paulo Henrique (PH)
[email protected]
Data
Hoje
16/07
19/07
24/07
31/07
07/08
14/08
21/08
3
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Vejamos cada parte do nosso conteúdo:
3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e
compostas. 3.2 Tabelas-verdade. 3.3 Equivalências. 3.4 Leis de De
Morgan. 4 Lógica de primeira ordem.
Aqui, falaremos dos Conceitos Iniciais de Lógica. Falaremos de
proposições, conectivos, proposições equivalentes e suas negações.
Conheceremos a Tabela-Verdade para cada conectivo, veremos
detalhadamente como a banca aplica esse conteúdo na prova.
E o Cespe ainda é gente boa! Olha só o que eles já colocaram na
prova:
A lógica sentencial, ou proposicional, trata das sentenças, ou
proposições, passíveis de receberem um, e apenas um, entre os
dois valores lógicos: falsa (F) ou verdadeira (V). É usual simbolizar
as proposições por letras maiúsculas do alfabeto e construir novas
proposições usando-se símbolos lógicos. A proposição simbolizada
por ¬A, a negação da proposição A, terá valor lógico V, se A for F,
e valor lógico F, se A for V. A proposição simbolizada por AvB, lida
como “A ou B”, terá valor lógico F quando A e B forem F, e, nos
demais casos, será V. A proposição simbolizada por A→B, lida como
“se A, então B”, ou “B é condição necessária para A”, terá valor
lógico F quando A for V e B for F, e, nos demais casos será V. A
proposição simbolizada por A^B, que se lê “A e B”, terá valoração V
quando A e B forem V, e, nos demais casos, será F.
Um argumento é denominado válido, ou correto, se, simbolizado
por P1^P2^ ... ^Pn→Q, for uma tautologia, isto é, for valorado
sempre como V.
Viram o que eu falei? É exatamente a parte dos Conceitos Iniciais!
Vamos ver algumas questões?
(Auditor do Estado-2009-Secont/ES) Se as proposições A, B e D
forem V, então é possível que as proposições E, C, E→C, B→E e
A^C→ (¬D) também sejam V.
Prof. Paulo Henrique (PH)
[email protected]
4
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Sabendo que A = V, B = V e D = V, e se supormos que E e C
também sejam proposições simples verdadeiras, teremos:
1. E → C = V → V = V
2. B → E = V → V = V
Porém:
3. A ^ C → (¬D) ⇒ teremos que analisar primeiro o antecedente,
ou seja a 1a parte da condicional. V ^ V = V. Substituindo, ficará:
V → (¬V)
V→ F=F
Logo, nem todas as proposições serão V.
Item errado.
(Analista de Saneamento-2010-Embasa) Considerando que as
proposições A, B, B→C e [A^B]→[C→D] sejam V, então a
proposição D será, obrigatoriamente, V.
Mesma ideia da anterior! Temos 2 proposições simples (A e B) com
valor lógico V. Também temos que:
1. B → C = V. Como B = V, então:
V → C = V ⇒ na condicional, para que ela seja V, sabendo que a 1a
parte é V, então, OBRIGATORIAMENTE, a 2a parte (consequente)
deve ser V também. Logo, C = V.
Prof. Paulo Henrique (PH)
[email protected]
5
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
2. [A ^ B] → [C → D] = V ⇒ Substituindo os valores lógicos de A, B
e C nessa proposição composta, temos:
[V ^ V] → [V → D] = V ⇒ o antecedente traz uma conjunção e,
sabemos, que, na conjunção, se ambas as proposições simples
forem V, então a conjunção também será V.
Logo,
V → [V → D] = V ⇒ usaremos o mesmo entendimento aplicando no
começo da questão 2 vezes! A primeira, para descobrimos o valor
do consequente (2a parte da condicional). Ela deve ser V. Ficou
assim:
[V → D] = V ⇒ a segunda, para descobrir o valor de D. Para que
essa condicional seja V, obrigatoriamente D = V.
Item correto.
Outro conceito que o próprio Cespe nos ajuda é o de Lógica de
Primeira Ordem!
A lógica de primeira ordem também trata de argumentações
elaboradas por meio de proposições da lógica proposicional, mas
admite proposições que expressem quantificações do tipo “todo”,
“algum”, “nenhum” etc.
Ou seja, trabalharemos agora com proposições que apresentem
uma das expressões “Todo”, “Algum” e “Nenhum”, ok?
(Assistente de Saneamento-2010-Embasa) A negação da afirmação
Todas as famílias da rua B são preferenciais é Nenhuma família da
rua B é preferencial.
Prof. Paulo Henrique (PH)
[email protected]
6
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
A questão pede a Negação do TODO. Pensem assim:
Se eu quiser dizer que a frase ‘Todas as cadeiras são vermelhas’ é
falsa, então preciso ter ALGUMA cadeira que NÃO seja vermelha!
Logo, a Negação do Todo é Algum Não (veremos com mais
detalhes nas aulas seguintes, ok?
Logo,
A negação de ‘Todas as famílias da rua B são preferenciais’ é
‘ALGUMA família da rua B NÃO é preferencial’.
Item errado.
1 Estruturas lógicas. 2 Lógica de argumentação: analogias,
inferências, deduções e conclusões. 3.5 Diagramas lógicos.
Se definíssemos os itens passados como Conceitos Iniciais, essa
parte do edital traz a parte mais avançada da Lógica. Precisaremos
demais dos conceitos de lógica proposicional para trabalharmos
sem stress nessa parte!
Trabalhar com Lógica de Argumentação é trabalhar com
ARGUMENTO. Argumento nada mais é do que um conjunto de
proposições (premissas), associadas a uma conclusão.
Pode ser:
- válido, quando a conclusão é conseqüência obrigatória das
premissas;
- inválido, a verdade das premissas não é suficiente para
garantir a verdade da conclusão.
Prof. Paulo Henrique (PH)
[email protected]
7
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
A diferença é que, agora, trabalharemos com representações
gráficas para determinarmos se teremos um argumento válido ou
inválido.
Podemos ter 2 formas de o Cespe cobrar esse assunto:
1) Se o argumento apresentar proposições categóricas (Todo,
Nenhum, ou Algum), vamos resolver as questões utilizando os
conceitos de Diagramas Lógicos.
2) Se o argumento apresentar os conectivos (proposições
simples ou compostas), podemos utilizar os conceitos das
Estruturas Lógicas ou pela nossa ‘amiga’ Tabela-Verdade.
Vamos ver 3 exemplos dessa parte, ok?
(Analista em Transportes-2009-CETURB/ES) Uma dedução lógica é
uma sequência finita de proposições na qual algumas proposições,
denominadas premissas, são supostas verdadeiras, e as demais
proposições, chamadas conclusões, são também verdadeiras por
consequência das premissas e de conclusões previamente obtidas.
Considere as quatro proposições a seguir.
A: Se Abel não mora em Vitória, então Beto mora em Serra.
B: Se Carlos mora em Serra ou em Vila Velha, então Abel mora em
Vitória.
C: Se Danilo não mora em Vitória, então Carlos mora em Vila
Velha.
D: Beto mora em Linhares.
Sabendo que cada um dos rapazes mora em uma cidade diferente,
considerando as proposições A, B, C e D como premissas de uma
dedução lógica, julgue os itens que se seguem.
Prof. Paulo Henrique (PH)
[email protected]
8
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Carlos não mora em Vila Velha.
Danilo mora em Vitória.
Nesse 1˚ exemplo, iremos trabalhar com a parte das Estruturas
Lógicas. A questão traz um conjunto de afirmações, chamadas de
premissas, formadas por proposições simples ou compostas,
finalizando com uma conclusão válida, que será a resposta que
estamos procurando.
Temos as 4 premissas: A, B, C e D. Devemos assumi-las
VERDADEIRAS! Logo, dando uma ‘arrumada’ na casa, temos:
A: ~(Abel mora em Vitória) → (Beto mora em Serra) = V
B: [(Carlos mora em Serra) v (Carlos mora em Vila Velha) → (Abel
mora em Vitória) = V
C: ~(Danilo mora em Vitória) → (Carlos mora em Vila Velha) = V
D: Beto mora em Linhares = V
Vejam que a proposição D é uma proposição simples (essa é a
dica: começar por uma proposição simples!)
Logo, já descobri a cidade de Beto: Linhares!
Agora, vamos pra técnica ‘Puxa a Cordinha’! Como sei que Beto
mora em Linhares, então procuro uma referência, uma ‘cordinha’
amarrada em Beto para que eu possa puxar!
Ora, tem na premissa A! Daí, já conseguimos ‘enxergar’ que ‘Beto
mora em Serra’ é falsa, ok?
A: ~(Abel mora em Vitória) → (F) = V
Prof. Paulo Henrique (PH)
[email protected]
9
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Na condicional, se a 2a parte = F, então a 1a parte também deve
ser F. Logo, A: ~(Abel mora em Vitória) = F. Ou seja, Abel mora
em Vitória.
Puuuuuuxa a cordinha, meu povo!!!
PH, se Abel mora em Vitória, posso concluir que ‘Danilo mora em
Vitória’ = F, correto?
Companheiro, tá que nem um Pokemon: só evoluindo!!! É isso
mesmo! Conclusão perfeita! Analisando agora a premissa C, temos:
C: ~(F) → (Carlos mora em Vila Velha) = V
⇒ C: V → (Carlos mora em Vila Velha) = V
Daí, concluímos também que a 2a parte da condicional deve ser
obrigatoriamente V. Por isso, Carlos mora em Vila Velha.
Como Beto mora em Linhares, Abel em Vitória e Carlos em Vila
Velha, por exclusão, Danilo mora em Serra.
Só por desencargo de consciência, vamos analisar a premissa B,
ok?
B: [(Carlos mora em Serra) v (Carlos mora em Vila Velha) → (Abel
mora em Vitória) = V
⇒ B: [(F) v (V)] → (V) = V
⇒ B: (V) → (V) = V
Realmente, todas as premissas são verdadeiras. Agora, podemos
responder os itens:
Prof. Paulo Henrique (PH)
[email protected]
10
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Carlos não mora em Vila Velha.
Item errado.
Danilo mora em Vitória.
Item errado.
(Analista Judiciário-2009-TRT 17ª Região) Nos diagramas abaixo,
estão representados dois conjuntos de pessoas que possuem o
diploma do curso superior de direito, dois conjuntos de juízes e dois
elementos desses conjuntos: Mara e Jonas. Julgue os itens
subseqüentes tendo como referência esses diagramas e o texto.
A proposição “Mara é formada em direito e é juíza” é verdadeira.
A proposição “Se Jonas não é um juiz, então Mara e Jonas são
formados em direito” é falsa.
Na análise dos Diagramas Lógicos, conseguimos concluir que:
1. Mara pertence ao grupo do Direito, ou seja, Mara é formada em
Direito. Porém, por não fazer parte do conjuntos dos Juízes, Mara
não é juíza;
Prof. Paulo Henrique (PH)
[email protected]
11
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
2. O caso de Jonas é diferente! Como Jonas está dentro do
conjunto dos juízes e o conjunto dos juízes está dentro do
conjuntos dos formados em Direito (dizemos que TODOS os juízes
são formados em Direito), então Jonas é juiz e é formado em
Direito.
Nas próximas aulas, conceituaremos beeeeeem direitinho cada uma
das premissas, quando utilizarmos os termos Todo, Algum e
Nenhum, ok?
Portanto, pela nossa análise:
A proposição “Mara é formada em direito e é juíza” é verdadeira.
Nossa conclusão do item 1 não diz isso, não é mesmo?
Item errado.
A proposição “Se Jonas não é um juiz, então Mara e Jonas são
formados em direito” é falsa.
Temos uma condicional! Para que ela seja falsa, precisamos que o
antecedente seja verdadeiro e o consequente falso (V → F).
“Jonas não é um juiz” ⇒ proposição falsa (item 1)
“Mara e Jonas são formados em direito” ⇒ proposição verdadeira
(itens 1 e 2)
F→ V=V
Item errado.
Prof. Paulo Henrique (PH)
[email protected]
12
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
(Inspetor de Polícia Civil-2012-Polícia Civil/CE)
P1: Se se deixa dominar pela emoção ao tomar decisões, então o
policial toma decisões ruins.
P2: Se não tem informações precisas ao tomar decisões, então o
policial toma decisões ruins.
P3: Se está em situação de estresse e não teve treinamento
adequado, o policial se deixa dominar pela emoção ao tomar
decisões.
P4: Se teve treinamento adequado e se dedicou nos estudos, então
o policial tem informações precisas ao tomar decisões.
Com base nessas proposições, julgue o item a seguir.
Considerando que P1, P2, P3 e P4 sejam as premissas de um
argumento cuja conclusão seja “Se o policial está em situação de
estresse e não toma decisões ruins, então teve treinamento
adequado”, é correto afirmar que esse argumento é válido.
Questaozinha que gosto de chamar “A Nova Cara do Cespe”! Sim,
porque ultimamente QUASE TODA PROVA aparece uma questão
desse tipo. Porém, nós, do C24h, somos “passados na casca do
alho”. Mostraremos a vocês, nos míííííínimos detalhes, como
resolver essa e outras questões, ok?
Bom, e o que essa questão tem de especial? É o seguinte: olhando
para as premissas P1 a P4, temos que todas as proposições são
CONDICIONAIS. Alem disso, a questão traz, COMO CONCLUSÃO,
uma outra condicional.
E agora, o que fazer???
Normalmente, em uma questão de Lógica de Argumentação, nós
começamos a análise:
Prof. Paulo Henrique (PH)
[email protected]
13
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Nessa questão do Cespe, o raciocínio
começaremos a análise pela CONCLUSÃO!
é
o
mesmo,
porém
Aqui é o grande PULO DO GATO (o gato sou eu, lógico!)
Olha só, como a conclusão traz uma proposição condicional, a
análise será feita com base nessa proposição ser FALSA!
Mas por quê, PH???
Olha só, uma proposição condicional traz, na sua tabela-verdade, 3
valores lógicos verdadeiros e 1 falso:
Prof. Paulo Henrique (PH)
[email protected]
14
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
V→ V=V
V→ F=F
F→ V=V
F→ F=V
Por isso, é muito mais fácil imaginarmos que a condicional será
falsa do que verdadeira, não é mesmo?
Assim, nosso estudo será:
Vejamos:
Prof. Paulo Henrique (PH)
[email protected]
15
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
P1: Se se deixa dominar pela emoção ao tomar decisões, então o
policial toma decisões ruins.
⇒ (DDPE) → (PTDR)
P2: Se não tem informações precisas ao tomar decisões, então o
policial toma decisões ruins.
⇒ ~(TIP) → (PTDR)
P3: Se está em situação de estresse e não teve treinamento
adequado, o policial se deixa dominar pela emoção ao tomar
decisões.
⇒ (SE ^ ~TA) → (DDPE)
P4: Se teve treinamento adequado e se dedicou nos estudos, então
o policial tem informações precisas ao tomar decisões.
⇒ (TA ^ DE) → (TIP)
Conclusão: Se o policial está em situação de estresse e não toma
decisões ruins, então teve treinamento adequado
⇒ (SE ^ ~PTDR) → TA
Assim, se imaginarmos a conclusão falsa, temos:
Prof. Paulo Henrique (PH)
[email protected]
16
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
(SE ^ ~PTDR) = V, logo
SE = V e
~PTDR = V, logo PTDR = F
e TA = F
Analisando agora as premissas. Na P3, temos:
(SE ^ ~TA) → (DDPE)
⇒ (V ^ V) → (DDPE)
⇒ V → (DDPE) ⇒ (já estamos carecas de saber...) numa
condicional, se a 1a parte é V, então obrigatoriamente a 2a parte é
V. Assim, DDPE = V.
Já a P1, fica assim:
⇒ (DDPE) → (PTDR)
⇒V→ F=F
Opa, PH!!! Encontramos uma premissa falsa!!! Pode???
Pode não, meu povo! Isso quer dizer que, SE a conclusão fosse
falsa, nós DEVERÍAMOS TER TODAS AS PREMISSAS VERDADEIRAS.
Como uma delas é falsa, então a conclusão, não pode ser falsa!
Por isso, a CONCLUSÃO É VERDADEIRA e O ARGUMENTO É
VÁLIDO!!!
Prof. Paulo Henrique (PH)
[email protected]
17
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Item correto.
5 Princípios de contagem e probabilidade.
O próximo item do nosso conteúdo é, de fato, 2 assuntos
extremamente importantes tanto para o nosso concurso, como para
outros. É um assunto muuuuito cobrado e que exige dos candidatos
uma boa preparação, envolvendo cálculos matemáticos e (lógico!)
raciocínio lógico. Como sei que o ‘cocuruto’ de vocês já está bem
aquecido, vamos tirar de letra! Trabalharemos com:
Análise Combinatória
Probabilidade
A Análise Combinatória é a parte da Matemática que estuda o
número de maneiras que um acontecimento pode ocorrer, sem que
haja a necessidade de desenvolvermos todas as possibilidades. E
um dos principais tópicos desse assunto é o Princípio Fundamental
da Contagem (PFC), ok? Vamos ver 1 exemplo?
(Técnico Científico-2009-Banco da Amazônia) Suponha que um
banco tenha um cartão especial para estudantes, que já venha com
senha de 4 algarismos escolhidos de 0 a 9 e atribuídos ao acaso.
Com relação a essa situação, julgue o item subsequente.
Podem-se obter 2.016 senhas em que o 0 é, necessariamente, um,
e somente um, dos algarismos e os outros 3 algarismos são
distintos.
Simplificando, o Princípio Fundamental da Contagem (PFC) explica
que, diante de um determinado evento (colocado na questão) , se
Prof. Paulo Henrique (PH)
[email protected]
18
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
esse evento puder ser dividido em várias partes, encontraremos
quantas possibilidades para cada parte e, após, multiplicaremos
essas partes para encontrarmos a quantidade total, ok?
Traduzindo isso na nossa questão, a senha é o evento que temos
e cada um dos algarismos, a parte que precisamos encontrar.
Como a questão diz que um número 0 tem que fazer parte da
senha, ele pode estar:
Bom, já vimos onde o zero deve ficar! Em cada uma das posições
do zero, só poderemos ter 1 possibilidade (o próprio zero!). E já
que o restante dos algarismos deve ser distinto (e não pode ser o
zero), sobraram 9 números para uma posição, 8 para outra
(excluindo o 1º número e o zero) e 7 para a última (excluindo os
dois números anteriores e mais o zero). Ficou assim:
Prof. Paulo Henrique (PH)
[email protected]
19
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Notem que todos os valores são iguais. Temos 9 x 8 x 7
aparecendo nas 4 figuras. Assim:
Senhas = 9 x 8 x 7 x 4 = 2016
Item correto.
Guardem essa informação!!!
Quando falamos de probabilidade, falamos de
divisão. Divisão entre os resultados que nos
interessam e os resultados possíveis.
Ou seja:
Vamos entender o que acabei de falar! Digamos que eu queira
saber a probabilidade de tirar, em um lançamento de dado, um
Prof. Paulo Henrique (PH)
[email protected]
20
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
número maior que 4, ok? Vamos então responder algumas
perguntas:
Qual é o evento em análise?
Lançamento de um dado
Quais e quantos serão os resultados possíveis para esse evento?
Qualquer número do dado, ou seja, de 1 a 6. Total = 6
Quantos serão os resultados que satisfazem a EXIGÊNCIA do
evento?
A exigência é tirar um número maior de 4. Ou seja, temos 2
resultados: 5 e 6.
Logo:
Probabilidade = 2/6 = 1/3
Vamos ver um exemplo de como isso é cobrado na hora da prova...
(Analista Ambiental-2013-IBAMA) Para melhorar a fiscalização,
evitar o desmatamento ilegal e outros crimes contra o meio
ambiente, 35 fiscais homens e 15 fiscais mulheres serão enviados
para a região Norte do Brasil. Desses fiscais, uma equipe com 20
fiscais será enviada para o Pará, outra com 15 para o Amazonas e
uma outra com 15 para Rondônia. Considerando que qualquer um
desses 50 fiscais pode ser designado para qualquer uma das três
equipes, julgue o item seguinte.
Prof. Paulo Henrique (PH)
[email protected]
21
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Considere que o destino de cada um dos 50 fiscais será decidido
por sorteio da seguinte forma: em uma urna, colocam-se 20 fichas
com o nome Pará, 15 com o nome Amazonas e 15 com o nome
Rondônia. O fiscal, ao retirar da urna uma ficha, terá identificado o
seu destino. Nesse caso, se os 5 primeiros fiscais que retiraram
suas fichas terão como destino o Amazonas ou o Pará, a
probabilidade de o 6.º ir para Rondônia é superior a 30%.
Bom, nosso evento é retirar a 6a ficha que seja para Rondônia,
sabendo que 5 já foram tiradas e foram para o Pará ou Amazonas.
Ou seja:
Número de resultados favoráveis = todas as fichas para
Rondônia = 15
Número de resultados possíveis = todas as 50 fichas, menos as
5 já sorteadas = 50 – 5 = 45
Assim:
Probabilidade = 15/45 = 1/3 = 0,3333... ou 33,3% (superior a
30%)
Item correto.
Últimos itens do Edital!
6 Operações com conjuntos. 7 Raciocínio lógico envolvendo
problemas aritméticos, geométricos e matriciais.
Pelo histórico da banca, são as 2 partes menos exigidas. O item 6 é
bem tranqüilo! Trabalharemos com os Diagramas de Venn, muitas
vezes relacionados o resultado da análise dos conjuntos com outros
tópicos, como probabilidade e proposições.
Prof. Paulo Henrique (PH)
[email protected]
22
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
(Agente de Polícia Civil-2009-Polícia Civil/ES) Considere que em um
canil estejam abrigados 48 cães, dos quais:
•
24 são pretos;
•
12 têm rabos curtos;
•
30 têm pêlos longos;
•
4 são pretos, têm rabos curtos e não têm pêlos longos;
•
4 têm rabos curtos e pêlos longos e não são pretos;
•
2 são pretos, têm rabos curtos e pêlos longos.
Então, nesse canil, o número de cães abrigados que são pretos,
têm pêlos longos mas não têm rabos curtos é superior a 3 e inferior
a 8.
Olha só, temos 3 conjuntos:
cães pretos
cães com rabos curtos
cães com pelos longos.
#ficaadica!
Em operações com conjuntos, buscaremos sempre começar pela
intersecção dos conjuntos, ok?
Assim, colocaremos 2 (cães pretos, com rabos curtos e pêlos
longos) entre os 3 conjuntos. Depois, preencheremos as
informações relacionadas a intersecção entre 2 conjuntos:
- 4 são pretos, têm rabos curtos e não têm pêlos longos
⇒ coloquem 4 na intersecção de pretos e rabos curtos;
Prof. Paulo Henrique (PH)
[email protected]
23
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
- 4 têm rabos curtos e pêlos longos e não são pretos
⇒ coloquem 4 entre rabos curtos e pelos longos;
Como a questão pede os cães ‘que são pretos, têm pêlos longos
mas não têm rabos curtos’, colocaremos ‘x’ nessa parte. Fica
assim:
Agora:
- 24 são pretos ⇒ fica ‘24 – 4 – 2 – x’ = 18 – x
- 12 têm rabos curtos ⇒ fica ‘12 – 4 – 4 – 2’ = 2
- 30 têm pêlos longos ⇒ fica ‘30 – 4 – 2 – x’ = 24 – x
Prof. Paulo Henrique (PH)
[email protected]
24
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
O diagrama completo:
Agora, só precisamos somar todos os elementos e igualarmos a 48
(total de cães):
(18 – x) + 2 + (24 – x) + 4 + 4 + x + 2 = 48
⇒ -x + 54 = 48
⇒ x = 6 (portanto, superior a 3 e inferior a 8).
Item correto.
Meu povo, o item 7 é um ‘Deus nos acuda!’. Pode ter um monte de
coisa:
Prof. Paulo Henrique (PH)
[email protected]
25
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
- Regras de três
- Sistemas de equações
- Equação do 2o grau
- Área de figuras planas
- Teorema de Pitágoras
- Matrizes e Determinantes
A má notícia é que isso e muito mais! A banca pode falar de um
moooooonte de coisa em cima desse conteúdo e não estar ‘fugindo’
do edital.
A boa notícia é, como já falei antes, que essa parte não aparece
tanto nas provas do Cespe quanto proposições, ou probabilidade e
contagem. Pode mudar? Pode! Pode cair um monte? Pode! Acho
provável? NÃO! Porém, vamos ficar atentos ao que o ‘Ser Mau’ já
aprontou antes, ok?
(Administrador-2013-UNIPAMPA) Da herança recebida por uma
família, 2/5 foram entregues à mãe, 1/3 ao pai e o restante foi
distribuído entre os três filhos. Do que coube aos filhos, o mais
velho recebeu 2/5, o do meio recebeu 1/3 e o caçula ficou com o
restante. Considerando as informações acima apresentadas, julgue
o item seguinte.
Considere as seguintes proposições:
P: A mãe recebeu R$ 31.500,00;
Q: Os três filhos receberam, juntos, R$ 21.000,00.
Nesse caso, é correto afirmar que a proposição P ↔ Q é verdadeira.
Prof. Paulo Henrique (PH)
[email protected]
26
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
De quanto é a herança, meu povo! Se ele não falou, assumamos
‘x’, ok? Logo:
⇒ 2/5 foram entregues à mãe = 2x/5
⇒ 1/3 ao pai = x/3
⇒ e o restante foi distribuído entre os três filhos = x – 2x/5 – x/3
Façamos o MMC = 15. Assim:
= 15x/15 – 6x/15 – 5x/15
= 4x/15
Bom, cabe aqui uma análise sobre o que a questão apontou.
A proposição P ↔ Q deve ser verdadeira ⇒ para que isso aconteça,
os valores lógicos das proposições devem ser iguais. Ou ambas V,
ou ambas F. Assim, se imaginarmos ambas V, teremos:
1. A mãe recebeu 2x/5, que equivale a R$ 31.500,00;
2. Se os filhos receberam 4x/15 da herança, vamos ver quanto isso
daria.
Regra de Três simples!
Calculando:
⇒ 2x/5 . y = 4x/15 . 31500
Prof. Paulo Henrique (PH)
[email protected]
27
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
⇒ 2xy . 15 = 4x . 31500 . 5 (eliminemos o ‘x’ de cada lado, ok?)
⇒ 30y = 630000
⇒ y = 21000
Ou seja, se a mãe receber R$ 31.500,00 (proposição P
verdadeira), os filhos receberão R$ 21.000,00 (proposição Q
verdadeira). Se ambas as proposições são verdadeiras, então a
bicondicional também será!
Item correto.
Para terminar, um alerta!
O Cespe, além de cobrar questões como as que vimos acima, pode
trazer 2 assuntos que não aparecem explicitamente no nosso
conteúdo, porém que tem aparecido com a certa freqüência nas
últimas provas. E nem adianta argumentar que as questões estão
‘fora’ do edital que a banca não anula! São os seguintes:
- Associação Lógica
- Verdades e Mentiras
Vejamos um exemplo...
(Técnico de Segurança do Trabalho-2009-Banco de Brasília) A
esposa, o filho e a filha de Marcos são correntistas de uma mesma
agência do BRB. Certo dia, entregaram os cartões magnéticos a
Marcos para sacar dinheiro de suas contas, que têm as senhas de
números 201001, 201002 e 201003, e os códigos de três letras
Prof. Paulo Henrique (PH)
[email protected]
28
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
BRB, RBB e BBR. Marcos sabia a quem pertencia cada cartão e
lembrava-se das senhas e dos códigos, mas não das associações
entre cartões, senhas e códigos. Ele recordava apenas que a senha
do cartão da esposa era 201001 e o código de três letras associado
à senha 201002 era BBR. Marcos decidiu telefonar para casa e
obteve a informação de que o código do cartão da conta do filho
era RBB.
Com base nessas informações, julgue os itens a seguir.
A senha do cartão do filho de Marcos é 201003.
O código do cartão da filha de Marcos é BRB.
A 1a ideia aqui é montar uma tabela, colocando, nas linhas, a
esposa, o filho e a filha de Marcos. Nas colunas, as outras
informações: senhas e códigos.
Senhas
Códigos
201001 201002 201003 BRB RBB BBR
Esposa
Filho
Filha
Agora, lendo as informações, vamos preencher nossa tabela.
1. a senha do cartão da esposa era 201001 ⇒ coloquem ‘S’ na
célula da esposa e 201001 e o resto da linha e da coluna ‘N’.
2. o código do cartão da conta do filho era RBB ⇒ mesma coisa:
coloquem ‘S’ na célula do filho e RBB e o resto da linha e da coluna
‘N’.
Prof. Paulo Henrique (PH)
[email protected]
29
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Senhas
Códigos
201001 201002 201003 BRB RBB BBR
Esposa
S
N
N
N
Filho
N
N
S
N
Filha
N
N
Um dos fatores mais importantes para a resolução de questões
desse tipo é o ‘Cruzamento de Informações’. E o que é isso? É
quando você pega 2 informações dadas pela questão e as ‘cruza’,
gerando uma terceira. Olhem só!
Pelo item 1, sabemos que a senha do cartão da esposa era 201001.
Sabemos também que código de três letras associado à senha
201002 era BBR. Pergunto: o código da esposa pode ser BBR?
Negotoff, meu povo! Cruzando as informações, conseguimos
concluir logicamente que tal situação é impossível. Assim,
coloquem ‘N’ para esposa e BBR. Com isso, o único código possível
para ela é o BRB, sobrando para a filha o BBR.
Senhas
Códigos
201001 201002 201003 BRB RBB BBR
Esposa
S
N
N
S
N
N
Filho
N
N
S
N
Filha
N
N
N
S
Prof. Paulo Henrique (PH)
[email protected]
30
Raciocínio Lógico para AFT
Resolução de Questões Comentadas CESPE
Aula Inaugural
Professor: Paulo Henrique (PH)
Como descobrimos que o código da filha é BBR e esse código é da
senha 201002, logo essa é a senha da filha! Por exclusão, a senha
do filho é 201003. A tabela completa ficou assim:
Senhas
Códigos
201001 201002 201003 BRB RBB BBR
Esposa
S
N
N
S
N
N
Filho
N
N
S
N
S
N
Filha
N
S
N
N
N
S
Agora, podemos responder os itens.
A senha do cartão do filho de Marcos é 201003.
Item correto.
O código do cartão da filha de Marcos é BRB.
Item errado.
-----------------------------------------É isso aí, meu povo! Espero que tenham gostado dessa aula
inaugural! Vem muito mais por aí, para que vocês estejam com o
‘olho de Thundera’ brilhando a hora da prova!
Até a próxima aula!
Beijo no papai e na mamãe,
PH
Prof. Paulo Henrique (PH)
[email protected]
31
Download