Colégio de Aplicação João XXIII - MATEMÁTICA Atividades sobre CONJUNTOS NUMÉRICOS Conjunto dos Números Naturais (N) N={0, 1, 2, 3, 4, 5,...} Podemos considerar o conjunto dos números naturais ordenados sobre uma reta, como mostra o gráfico abaixo: Conjunto dos Números Inteiros (Z) Z={..., -3, -2, -1, 0, 1, 2, 3,...} O conjunto N é subconjunto de Z. Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo: Conjunto dos Números Racionais (Q) Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador Z e denominador Z*). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas. Exemplos: 5 3 3 Então : -2, , 1, , 1, , por exemplo, são números racionais. 4 5 2 Assim, podemos escrever: 3 6 9 1 2 3 1 2 3 b) 1 1 2 3 a) 3 Q a , com a Z , b Z e b 0} b 1 Colégio de Aplicação João XXIII - MATEMÁTICA É interessante considerar a representação decimal de um número racional, que se obtém a dividindo a por b. b Exemplos referentes às decimais exatas ou finitas: 0,5 5 1 10 2 - 1,25 - 125 5 1 ou - 1 100 4 4 3,75 375 15 3 ou 3 100 4 4 Exemplos referentes às decimais periódicas ou infinitas: 1 6 7 0,333... 0,857142857142... 1,1666... 3 7 6 Toda decimal exata ou periódica pode ser representada na forma de número racional, ou seja, na forma fracionária: Acompanhe o exemplo a seguir, no qual vamos encontrar a fração geratriz da dízima periódica simples 3,2222... x = 3,2222 …. ... Conjunto dos Números Irracionais (I) Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escrito na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3: 2 1,4142135... 3 1,7320508... Um número irracional bastante conhecido é o número =3,1415926535... Conjunto dos Números Reais (R) Dados os conjuntos dos Números Racionais (Q) e dos irracionais, definimos o conjunto dos números reais como: R=Q I 2 Colégio de Aplicação João XXIII - MATEMÁTICA O diagrama abaixo mostra a relação entre os conjuntos numéricos: Portanto, os números naturais, inteiros, racionais e irracionais são todos números REAIS. Obs.: Entre dois números inteiros existem infinitos números reais. Por exemplo: Entre os números 1 e 2 existem infinitos números reais: 1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 ... Entre os números 5 e 6 existem infinitos números reais: 5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 ... AGORA RESPONDA... 1) Qual a diferença entre o conjunto dos números naturais e o conjunto dos números inteiros? Exemplifique. 2) Transcreva todos os números do QUADRO 1 para o QUADRO 2, obedecendo a organização de cada conjunto. 25 π 0,333... 0,1 12 0,5 1/2 1 123 -1,2 -33 12% 100 0 -100 QUADRO 1 21 3, 012 0,5555... 10¹ -7/9 0, 00000000001 -78 1/ 4 56 -0,01 +1 +1000 22,232323... -0,121212... 10/100 2 -159 10000000000,0 ( 64) -789 1,000000 -23 1 +1,23 144 2 16 -2,4444... -100/-100 1,758236418... 3 Colégio de Aplicação João XXIII - MATEMÁTICA NATURAIS INTEIROS QUADRO 2 RACIONAIS IRRACIONAIS REAIS 3) Responda: 4) Para marcar o número misto, 3 7 , primeiro devemos escrevê-lo na forma de um numeral 2 1 . Então dividimos o segmento de extremos 3 e 4 em duas partes , 2 contamos uma parte do 3 para a direita, e marcamos 7 2 . Baseando-se nesse exemplo localize na reta numérica as frações racionais a seguir: 4 Colégio de Aplicação João XXIII - MATEMÁTICA a) 5 2 b) 7 2 c) 10 4 d) 3 2 e) 9 2 f) 15 2 g) 9 2 5) Quais dos números a seguir não são reais? 6) Sejam os números: a) Quais são inteiros? b) Quais são racionais? c) Quais são irracionais? d) Quais são reais? 7) 8) Calcule: 1 2 1 b)1, 222... 6 1 c)0, 777... 2 1 2 d ) 0, 222... : 3 3 a)0, 777... 5 Colégio de Aplicação João XXIII - MATEMÁTICA 9) Encontre a fração geratriz de cada dízima periódica a seguir: a) 0,373737... = b) -0,888... = c) 0,555... = d) -3,222... = e) -1,212121... = f) 0,050505... = g) 0,565656... = h) 1,434343... = i) 2,010101... = Problemas: números e sistemas de numeração. 1) Retire 10 algarismos do numeral a seguir, que possui 20 algarismos, de tal forma que o número obtido seja o menor possível. 1234512345123451234512345 Resposta: 1 1 1 2 3 1 2 3 4 5 2) Resposta: "C" 6