Espécies de Physalis angulata Lin. foram coletados - pibic

Propaganda
UNIVERSIDADE FEDERAL DO PARÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
DEPARTAMENTO DE PESQUISA
PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO CIENTÍFICA – PIBIC:
CNPq.
RELATÓRIO TÉCNICO - CIENTÍFICO
Período:02/08/2015 a 10/08/2015.
( ) PARCIAL
(x) FINAL
IDENTIFICAÇÃO DO PROJETO
Título do Projeto de Pesquisa:
Estudo fitoquímico e avaliação do perfil de espécies vegetais usadas tradicionalmente na
medicina popular da região amazônica.
Nome do Orientador: Prof. Dr. Milton Nascimento da Silva
Titulação do Orientador: Doutor
Faculdade: Química
Unidade: Instituto de Ciências Exatas e Naturais
Laboratório: Laboratório de Cromatografia Líquida – LABCROL–
Título do Plano de Trabalho:
Estudo fitoquímico da espécie vegetal Physalis angulata L.
Nome do Bolsista: Luziane da Cunha Borges
Tipo de Bolsa:
(x) PIBIC/CNPq
1
1- RESUMO
No Pará encontram-se diversas espécies vegetais usadas popularmente para fins
terapêuticos. Dentre essas espécies encontra-se Physalis angulata Lin. (Família
Solanaceae) que é uma planta considerada daninha conhecida popularmente como
camapú, dispersa em vários estados do Brasil e em vários continentes, esta espécie é
amplamente utilizada na medicina popular devido possuir metabolitos secundários, os
quais
apresentam
propriedades
anticoagulante,
antileucêmica,
anti-inflamatória,
anticâncer, analgésica e entre outras. Por esta razão, este trabalho buscou realizar o
estudo fitoquímico do extrato etanólico de todas as partes da planta. Foi realizada a
análise do perfil cromatográfico do extrato por HPLC em seguida o mesmo foi fracionado
por cromatografia em coluna e as frações resultantes foram analisadas por cromatografia
clássica e por HPLC, resultando no isolamento de duas substâncias, fisalina D (S2) e
fisalina G (S1). As substâncias isoladas são pertencentes à classe dos vitaesteróides,
sendo suas estruturas posteriormente elucidadas através de técnicas espectroscópicas
uni e bidimensionais de RMN.
Palavras-chave: Physalis angulata Lin., camapú e HPLC.
2
2- INTRODUÇÃO
As plantas são fontes indispensáveis da medicina popular desde tempos
imemoriais. O uso de plantas para fins medicinais são considerados como as primeiras
formas de uso de medicamentos que se tem conhecimento (MOTA,2004). Registros
apontam que o uso de plantas medicinais já era evidenciado há 60.000 anos tanto na
cultura ocidental como na oriental, como também em países desenvolvidos e não
desenvolvidos.
De maneira indireta, este tipo de cultura medicinal desperta o interesse de
pesquisadores em estudos envolvendo áreas multidisciplinares, como por exemplo,
botânica, farmacologia e fitoquímica, que juntas enriquecem os conhecimentos sobre a
inesgotável fonte medicinal natural: a flora mundial (MACIEL et al., 2002).
Ao levar em consideração a enorme biodiversidade brasileira, especialmente da
região amazônica, a descoberta de novas classes de compostos e substâncias bioativas
para finalidades terapêuticas se torna cada vez mais possível.
A fitoterapia tem assumido um expressivo papel no contexto da medicina. A cada
ano vem crescendo o número de profissionais e pacientes que procuram este recurso para
solucionar questões relacionadas à saúde (FERRO et al., 2008). Sendo assim, o estudo
químico relacionado às plantas com atividades medicinais resulta de um grupo de
pesquisa
multidisciplinar,
no
qual
fitoquímicos,
botânicos,
farmacologistas
e
microbiologistas corroboram na tentativa de validar as plantas medicinais, visando obter
novos agentes químicos (BRESOLIN et al., 2003).
As plantas da família Solanaceae ocorrem em diversas partes do mundo e tem
como centro de diversidade a América do Sul. No Brasil, ocorrem 31 gêneros e cerca de
500 espécies nativas (HUNZIKER, 2001). Destes, 23 gêneros e aproximadamente 180
espécies nativas (STEHMANN & MENTZ, 2006) fazem parte da flora da região sul do
Brasil. No Rio Grande do Sul, a família está representada por 22 gêneros, com
representantes nativos e seis gêneros com representantes introduzidos, compreendendo
115 e 26 espécies, respectivamente (MENTZ et al., 2007, SOARES et al., 2007b).
O táxon Physalis abrange cerca de cento e vinte (120) espécies com caracteres
principalmente herbáceos, que se distribuem pelas zonas temperadas do globo terrestre,
especialmente nas Américas do Norte e do Sul, cujos principais centros de diversidade
taxonômica encontram-se nos Estados Unidos e México (HAWKES et al., 1991;
TOMASSINI et al., 2000).
3
O nome Physalis origina-se do grego, onde “physa” significa bolha ou bexiga,
referindo-se ao cálice que envolve os frutos, principal característica das plantas que
compõem este táxon (HAWKES et al., 1991).
A espécie P. angulata é exclusivamente produtora de seco-esteróides C/D
altamente oxigenados, chamadas fisalinas. Estudos anteriores levaram ao isolamento de
derivados de vitanolídeos tripanocidas. Os vitanolídeos são esteróides estruturalmente
diferentes com um esqueleto de ergostano em que C-22 e C-26 são oxidados para formar
uma -lactona. Estes compostos são específicos para a família Solanaceae e, em
particular, para os gêneros Withania, Acnistus, Dunalia, Physalis, Datura, Lycium, e
Jaborosa (SILVA et al., 2005).
Das cento e vinte espécies de Physalis existentes é possível encontrar na literatura
a identificação de dezenove fisalinas principais, e de algumas destas, seus isômeros. É
interessante notar a pluralidade de anéis que este grupo de vitaesteróides apresenta.
Dessas dezenove já elucidadas, cinco são heptacíclicas, oito octacíclicas, cinco
nonacíclicas e uma undecacíclica.
4
3- JUSTIFICATIVA
Nos últimos anos, o uso de produtos à base de planta tem vindo a aumentar nos
países em desenvolvimento. As plantas tem sido sempre uma fonte atraente de drogas.
Por outro lado as formas de interações moleculares e mecanismos de bioatividade dos
extratos ou os seus componentes bioativos proporcionam um desafio para os cientistas
(HEMAMALINI et al., 2013).
Os produtos de origem vegetal, denominados fitoterápicos, estão relacionados com
a exploração tecnológica e econômica de vegetais empregados na prevenção, no
tratamento e na cura de distúrbios, disfunções ou doenças. Estes produtos necessitam de
um controle de qualidade adequado, tanto para suas matérias primas (plantas), quanto
para o produto tecnologicamente acabado (fármaco). Este controle contribui, sem dúvida,
para o tripé eficácia, segurança e qualidade, refletindo como principal resultado no binômio
custo-benefício. Estes princípios são necessários ao desenvolvimento cientifico e
tecnológico dos medicamentos fitoterápicos, pois asseguram uma melhor aceitação pela
classe médica que os prescreve, propiciando confiabilidade àqueles que os venham
consumir.
Physalis angulata Lin., (sinonímia: Physalis dúbia Link, Physalis linkiana Nees.
Physalis ciliata Sieb. et Zucc.) é popularmente conhecida como camapum, palavra de
origem tupi que significa “estalo do peito” em virtude do som reproduzido quando estalado
contra o peito. Por ser uma planta amplamente dispersa em vários estados do Brasil,
também é conhecida por outras denominações como, bucho-de-rã, joá-de-capote,
camapú, camambú, camarú, mata-fome, bate-testa, joá, juá-poca, balão-rajado e balão
(LORENZI, 2002).
P. angulata Lin. é, sem dúvida, a mais representativa das espécies do gênero
Physalis, considerando seu valor medicinal. Integra o elenco de plantas curativas de
diversos sistemas de medicina tradicional de várias partes do planeta, inclusive do Brasil,
cujas propriedades medicinais são amplamente difundidas, especialmente no Nordeste
do Brasil e Amazônia. O chá da planta é recomendado na forma de banho para o
tratamento de reumatismo e males do fígado. Seus frutos são utilizados como
desobstruentes e diuréticos. As folhas são aplicadas contra inflamação da bexiga, do baço
e contra icterícia. Sendo ainda empregadas no tratamento de malária e hepatite. O suco
é considerado calmante e depurativo, sendo empregado contra dores de ouvido. Algumas
tribos indígenas colombianas consideram as folhas e frutos com propriedades narcóticas,
5
e em uso externo, o decocto destas partes é utilizado como anti-inflamatório para doenças
de pele em geral. No sistema de medicina tradicional do Peru, as raízes deixadas em
repouso no rum são empregadas no tratamento de diabetes (LORENZI, 2002).
De acordo com a literatura diversas atividades na espécie Physalis angulata Lin. já
foram estudadas e comprovadas. Na medicina popular, os extratos ou infusos da planta
tem sido utilizado em vários países para o tratamento de diversas doenças, como malária,
asma, hepatite, dermatite e reumatismo (LIN et al., 1992).
A partir destas considerações e diante da importância da pesquisa química de
produtos naturais para a obtenção de novos compostos com finalidade terapêutica, este
trabalho vem avaliar o perfil químico do extrato etanólico de P. angulata Lin. buscando
isolar e identificar as substâncias presentes no extrato.
4- OBJETIVOS
4-1-
GERAL
 Estudar o perfil químico do extrato etanólico da espécie Physalis angulata L.
(camapú) por HPLC e fornecer base para a produção de fitoterápicos.
4-2-
ESPECÍFICOS
 Estudar quimicamente o extrato etanólico de Physalis angulata, visando
isolar
os
principais
constituintes
químicos,
utilizando
a
técnicas
cromatográficas;
 Identificar as estruturas isoladas utilizando técnicas espectrométricas de
RMN (uni e bidimensionais);
5- PARTE EXPERIMENTAL
6
5-1-
MATERIAIS E MÉTODOS
 Nas separações cromatográficas em coluna, foi utilizada como adsorvente
sílica gel (60-200 µm) da SilicaFlash®G60.
 Solvente grau HPLC: acetonitrila. A água foi purificada em um sistema de
água Millipore e as fases móveis foram passadas em um filtro de membrana
de nylon com poros de 0,45 µm.
 Solventes grau PA: Hexano, Acetato de etila, Metanol e Álcool etílico.
 Foi utilizado como revelador nas cromatoplacas: ácido sulfúrico (revelou as
substâncias exibindo coloração).
 As amostras foram pesadas em balança analítica SHIMADZU, modelo
AY220, com precisão de 0,0001 g.
 Técnica Cromatográfica: Cromatografia em camada delgada comparativa
(CCDC) em cromatoplacas medindo 5x5 cm.
5-2-
EQUIPAMENTOS E ACESSÓRIOS UTILIZADOS
 Evaporador rotativo a vácuo QUIMIS, modelo Q-344-2, para concentração
da solução etanólica;
 Para o tratamento das amostras (clean up) foram utilizados cartuchos com
fase estacionária C18, todos da Phenomenex.
 Cromatógrafo Líquido de Alta Eficiência da marca Shimadzu, modelo
PROMINENCE, composto por duas bombas modelo LC-10 AD de um canal,
detector de arranjo de diodo modelo SPD-M20A, degaseificador de
membrana modelo DGU-14A, auto-injetor de amostras modelo SIL-20A,
interface
de
comunicação
modelo
CBM-20A
acoplado
a
um
microcomputador Pentium IV com software de integração LCsolution;
 Em cromatografia líquida de alta eficiência utilizou-se como fase estacionária
uma coluna Gemini C18 (250 mm x 4,6 mm, 5 μm, 110 Å) analítica. A coluna
de segurança ou pré-coluna foi um HOLDER® bicompartilhado contendo, em
seu interior, um cartucho de segurança C18 (4 x 30 mm, 5 µm), adquirido da
Phenomenex® (Torrance, CA, USA);
7
 Para validação do método foi utilizada como fase estacionária uma coluna
Gemini C18 (250 mm x 4,6 mm, 5 μm, 110 Å), analítica;
 Seringas descartáveis de 5 mL; filtro de seringa de nylon de 13 mm, com
poro de 0,45 µm (Tedia Brasil); pipetas calibradas da Labmate de 1 a 5 mL
e 100 a 1000 µL; ponteiras de 300 µL, 1 mL e 5 mL;
 Ultrassom da Branson 2510.
 Cromatógrafo Líquido de Alta Eficiência da marca Shimadzu, modelo
PROMINENCE, composto por duas bombas modelo LC-6 AD de um canal,
detector de arranjo de diodo modelo SPD-10AV, degaseificador de
membrana modelo DGU-2A5R, auto-injetor de amostras modelo LC-8A,
interface
de
comunicação
modelo
CBM-20A
acoplado
a
um
microcomputador Pentium IV com software de integração LCsolution;
5-3-
COLETA DO MATERIAL VEGETAL PARA ANÁLISE FITOQUÍMICA
Espécies de Physalis angulata Lin. foram coletados no município de Boa Vista do
Acará, no estado do Pará. A planta foi identificada taxonomicamente pelo Dr. Ricardo
Secco, do departamento de Botânica. Os espécimes foram depositados no herbário do
Museu de Emilio Goeldi (Pará, Brasil).
5-4-
OBTENÇÃO DO EXTRATO BRUTO
O material botânico de Physalis angulata L. foi seco em estufa com temperatura
máxima de 40ºC, em um período de sete dias, sendo posteriormente trituradas em moinho
de facas, obtendo-se um total de material seco e moído de 500 g. Este material foi
submetido a cinco extrações (com 100g cada extração) a quente por Sohxlet com solvente
etanol grau PA em um tempo de 5 dias por 7 horas cada. O solvente foi eliminado em
evaporador rotativo sob pressão reduzida obtendo o extrato etanólico bruto (50 g).
5-5-
FRACIONAMENTO CROMATOGRÁFICO DO EXTRATO ETANÓLICO DE P.
angulata Lin.
8
O extrato etanólico bruto (50 g) foi fracionado por CCVU - Coluna Cromatográfica
por Via Úmida filtrante, utilizando-se misturas de solventes com polaridade crescente, em
um volume calculado de 550 mL de cada sistema: Hexano/Acetato de etila (1:9; 3:7; 1:1),
Acetato de etila 100%, Acetato de etila/ Metanol (2:8) e Metanol 100%, obtendo-se após
a evaporação dos solventes as respectivas frações F1 (2,25 g); F2 (1,94 g); F3 (826,7 mg)
e F4 (4,25 g); F5 (16,6 g) e F6 (8,07 g) (FLUXOGRAMA 1), obtendo um rendimento de
aproximadamente 67,9%.
Analisando as três últimas frações no HPLC numa eluição em gradiente, obteve-se
os cromatogramas, como resultados, estes mostraram que a fração F4 (Acetato de etila
100 %), mostrou ser promissora por apresentar as substâncias de interesse.
Como o objetivo do trabalho é isolar substâncias presentes no extrato e foi
constatado que as mesmas encontram-se na fração F4, julgou-se necessário então
refraciona-la.
A fração F4 (4,25 g) foi refracionada por Cromatografia em Coluna (FLUXOGRAMA
1), utilizando-se misturas de solventes com polaridade crescente, em um volume
calculado de 500 mL de cada sistema: Hexano/Acetato de etila/Metanol (50:47,5:2,5;
50:45:5; 50:40:10; 30:60:10), Acetato de etila/Metanol (90:10) e Metanol 100%. Foram
obtidas 78 frações, as quais foram analisadas por CCDC (Cromatografia em Camada
Delgada Comparativa) e a partir dos resultados algumas frações foram reunidas, foi
observado que alguns compostos de interesse encontravam-se na reunião 39-41 (169,9
mg), na fração 43 (30 mg) e na fração 49 (20,1 mg) que provavelmente apresentou uma
substância isolada de acordo com analises por HPLC.
5-6-
PRÉ-TRATAMENTO
UTILIZADO
PARA
OBTER
O
PERFIL
CROMATOGRÁFICO DO EXTRATO E DAS FRAÇÕES DA CCVU.
9
O método de pré-tratamento (clean up) empregado foi a Extração em Fase Sólida
(SPE). Foram utilizados cartuchos Strata-C18 da Phenomenex, com 50 g de fase
estacionária e 1,0 mL de volume. Foi usada uma alíquota de 10 miligramas do extrato e
em seguida 10 miligramas da reunião 39-41, da fração 43 e da fração 49. O cartucho
Strata-C18 foi condicionado com 1,0 mL de acetonitrila e em seguida 1,0 mL de H 2O. À
alíquota de cada fração, foi adicionado 0,8 mL de acetonitrila e levado ao ultrassom por
um minuto. Após esse tempo, foi adicionado 0,2 mL de H2O e levado ao ultrassom por
mais um minuto. A solução foi aplicada no cartucho, recolhendo-se a solução de interesse
e em seguida passou-se mais um volume do sistema (1,0 mL de Acetonitrila/Água 8:2 v/v)
e coletado no mesmo recipiente. O solvente foi evaporado na capela e ressuspendido em
1 mL de acetonitrila, de onde se retirou uma alíquota de 20 µL da solução resultante,
sendo injetado no cromatógrafo líquido.
Com o objetivo de se obter o perfil cromatográfico do extrato, uma alíquota de 20
µL da solução obtida após a suspenção de 1 mL de Acetonitrila obtida do pré- tratamento,
foi injetada no HPLC em uma eluição em gradiente com fase móvel composta por solvente
A = Água e B = Acetonitrila, variando-se de 5 a 100% do modificador orgânico (B), no
tempo de 60 minutos de análise. A vazão da fase móvel foi de 1 mL/minuto, e o detector
de absorbância na região do ultravioleta operando em 227 nm, para a análise do melhor
sistema a ser utilizado na separação.
Como fase estacionária, utilizou-se uma coluna analítica Gemini C18 (250 x 4,6
mm), com partículas de 5 µm, dotada de pré-coluna. Como fase móvel utilizou-se uma
mistura de solventes composta por água ultrapura e acetonitrila (ACN) grau HPLC. Os
solventes foram filtrados em membrana de nylon de 0,45 µm.
Com o objetivo de otimizar o método para o isolamento das substâncias de
interesse, realizou-se o perfil cromatográfico das frações Fr.39-41 e Fr.49 do
refracionamento da fração F4 (Acetato de etila 100%), relatado anteriormente, para prever
se havia possibilidade de eluição no modo isocrático. Baseado na relação (T rz - Tra) /Tg,
que deve apresentar valor inferior a 0,4 segundo SNYDER e colaboradores (1997), foram
realizados o cálculo e o resultado obtido para a relação foi inferior a este valor, para as
frações analisadas, demonstrando que a separação podia ser realizada no modo
isocrático.
Considerando o estudo de SNYDER e colaboradores (1997), é possível propor
valores desejáveis para o fator de retenção k (k = 5; k = 10; k = 20), com base nos tempos
de retenção da última banda. O tempo de retenção para a reunião 39-41 foram próximos
10
a 27 minutos. Com isso, foi calculado um valor teórico para o percentual do modificador
orgânico baseado nos estudos de SNYDER. Para se estimar um valor de percentual do
modificador orgânico, optou-se por uma separação com k = 10 e foi sugerido um sistema
isocrático. Os sistemas propostos por SNYDER, entretanto, não foram eficientes, uma vez
que não foi observado uma boa seletividade entre os compostos, havendo a necessidade
de uma otimização. Com isso foi escolhido o seguinte sistemas: 36% (Fração 39-41). A
análise em um sistema no modo isocrático ainda não foi realizada para a fração 49 já que
a mesma possui uma substância isolada de acordo com analises espectrométricas de
RMN.
FLUXOGRAMA 1. Obtenção do extrato, das frações e substâncias obtidas (até o
momento) a partir do material botânico de P. angulata Lin.
11
Material botânico (500 g)
Extração por Sohxlet
com Etanol grau PA
EXTRATO ETANÓLICO (50 g)
CCVU Filtrante
F3 (826,7 mg)
Hex/AcOEt
1:1
F2 (1,94 g)
Hex/AcOEt
3:7
F1 (2,25 g)
Hex/AcOEt
1:9
F5 (16,6 g)
F4 (4,25 g)
AcOEt
F6 (8,07 g)
MeOH
AcOEt/MeOH
2:8
REFRACIONAMENTO
(CCVU)
Analisadas até o
presente momento
78 SUBFRAÇÕES
Fr.39-41 (160,9 mg)
Fr.49 (20,1 mg)
Substância
S1 (27,6 mg)
Substância
S2 (20,1 mg)
O
O
O
O
O
O
O
O
O
O
O
HO
O
HO
O
O
O
O
OH
Fisalina G
OH
OH
Fisalina D
6- RESULTADOS E DISCUSSÕES
6-1-
PERFIL CROMATOGRÁFICO DO EXTRATO ETANÓLICO DE P. angulata Lin.
12
Para realizar o perfil cromatográfico, uma alíquota de 10 miligramas do extrato foi
submetida à um pré-tratamento por Extração em Fase Sólida (SPE), objetivando-se reter
as impurezas e/ou interferentes, deixando apenas passar os componentes de interesse.
A solução obtida foi posteriormente analisada por HPLC, obtendo o perfil cromatográfico
na busca do melhor sistema para isolamento das substâncias.
mAU
200
3.630/187719
Ch2-227nm,4nm (1.00)
175
25.555/86849
150
125
100
75
50
25
0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
min
Figura 1- Perfil cromatográfico do extrato etanólico. Fase móvel composta por H2O/ACN variando de
5 a 100% em um tempo de 60 minutos, em modo linear e vazão de 1 mL/min. Detecção de UV, = 227 nm.
6-2-
ANÁLISE DAS TRÊS ULTIMAS FRAÇÕES OBTIDAS POR CCVU.
13
uV
450000
400000
Azul: F4 (AcOEt 100%)
350000
Vermelho: F5 (Hex/AcOEt 20%)
300000
Verde: F6 (MeOH 100%)
250000
200000
150000
100000
50000
0
5.0
2.5
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
min
Figura 2- Sobreposição dos cromatogramas obtidos a partir das análises das frações F4, F5, F6. Fase
móvel composta por H2O/ACN variando de 5 a 100% em um tempo de 60 minutos, em modo linear e vazão de 1
mL/min. Detecção de UV, = 227 nm.
Analisando os cromatogramas obtidos das três últimas frações da CCVU, bem
como suas absorções no ultravioleta, foi observado que a F4 (Acetato de etila 100 %)
detinha da maior concentração de compostos no comprimento de onda de 227 nm. Com
isso, o isolamento das substâncias foi realizado mediante análise apenas dessa fração, a
qual foi refracionada como relatado anteriormente.
6-3-
ISOLAMENTO DAS SUBSTÂNCIAS DE INTERESSE DA REUNIÃO 39-41 POR
HPLC-DAD.
14
Depois de determinado o melhor sistema de separação das substâncias no modo
isocrático, a substância presente na reunião 39-41 foi isolada em um cromatógrafo liquido
em escala semi-preparativa. Como fase estacionária, utilizou-se uma coluna semipreparativa Gemini C18 5 μm (250 x 10 mm), com fluxo de 4,7 mL/min. Como fase móvel,
utilizou-se mistura composta pelos solventes H2O/ACN 64:36 v/v.
Foram isoladas as substâncias S1 da reunião 39-41 e S2 da fração 49.
As
substâncias isoladas tiveram suas estruturas completamente determinadas por métodos
espectrométricos de análises.
9.675/41516
mAU
45.0
Ch1-227nm,4nm (1.00)
42.5
40.0
S1
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
-2.5
-5.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
min
Figura 3- Cromatograma no modo de eluição isocrático da reunião 39-41. Fase móvel H2O/ACN 64:36
e vazão de 1 mL/min. Detecção de UV,  = 227 nm.
15
mAU
2500
Ch1-227nm,4nm (1.00)
2250
2000
25.648/1216351
1750
S2
1500
1250
1000
750
500
250
0
25.0
20.0
15.0
10.0
5.0
55.0
50.0
45.0
40.0
35.0
30.0
min
Figura 4- Cromatograma no modo de eluição em gradiente da fração 49. Fase móvel H2O/ACN variando de
5 a 100% em um tempo de 60 minutos, em modo linear e vazão de 1 mL/min. Detecção de UV,  = 227 nm.
6-4-
CONSTITUINTES QUÍMICOS ISOLADOS DE Physalis angulata Lin.
Na investigação química de P. angulata Lin. foram isoladas duas substâncias,
pertencentes a classe das fisalinas. Todas foram isoladas via HPLC em escala semipreparativa.
A determinação estrutural das substâncias isoladas foi feita com base na análise
dos dados espectrométricos de RMN de 1H,
13C
e por comparação com informações
encontradas na literatura.
6-4-1 ESTRUTURAS DAS SUBSTÂNCIAS ISOLADAS.
O
O
O
O
O
O
O
O
O
O
HO
O
HO
O
O
O
O
O
OH
OH
Fisalina G
OH
Fisalina D
16
6-5-
ESPECTROS DE RMN DAS SUBSTÂNCIAS ISOLADAS.
Figura 5- Espectro de RMN 13C da fisalina G (S1) (75 MHz, CDCl3).
Figura 6- Espectro de RMN 13C (expansão) da fisalina G (S1) (75 MHz, CDCl3).
17
Figura 7- Espectro de RMN 1H da fisalina G (S1) (300 MHz, CDCl3).
18
Figura 8- Espectro de RMN 1H (expansão) da fisalina G (S1) (300 MHz, CDCl3).
Figura 9- Espectro de RMN 13C da fisalina D (S2) (75 MHz, CDCl3).
19
Figura 10- Espectro de RMN 13C (expansão) da fisalina D (S2) (75 MHz, CDCl3).
Figura 11- Espectro de RMN 1H da fisalina D (S2) (300 MHz, CDCl3).
20
Figura 12- Espectro de RMN 1H (expansão) da fisalina D (S2) (300 MHz, CDCl3).
7- CONSIDERAÇÕES FINAIS
Neste trabalho foram estudadas todas as partes da espécie Physalis angulata Lin.
sob o ponto de vista fitoquímico.
A partir do extrato etanólico de P. angulata Lin. foram isoladas as substâncias:
fisalina D e fisalina G, todas pertencentes a classe dos vitaesteróides. Nenhuma das duas
substâncias isoladas são inéditas.
8- REFERÊNCIAS BIBLIOGRÁFICAS
ALVES, D. T. V. Estudo fitoquímico de Physalis angulata Lin. (CAMAPÚ) por HPLC,
Dissertação de mestrado, UFPA, 2012.
BALANDRIN, M.F., KLOCKE, J. A., WURTELE, E. S., BOLLINGER, W. H., Natural
plant chemicals: sources of industrial and medicinal materials. Science, v. 228, Issue
4704, 1154-1160.
BRESOLIN, T. M. B.; FILHO, V.C. Ciências Farmacêuticas: Contribuição ao
Desenvolvimento de Novos Fármacos e Medicamentos. Itajaí: UNIVALI, 2003. 239p.
FERRO, D. Aspectos clínicos da fitoterapia. In: PEREIRA, A. M. S. (Org.).
Implantação da fitoterapia no município de Jardinópolis – SP. Ribeirão Preto: Legis
Summa, 2008. 155 p.
HAWKES, J. G. Solanaceae III taxonomy chemistry evolution. Richmond,
Surrey, UK: The Royal Botanic Gardens Kew, 1991;
HEMAMALINI, K.; ANARUG, B. Evaluation of phytochemical and pharmacological
activity of methanolic extract of Sophora interrupta. Indo-American J Pharm Res, 2013,
3(8), 6381-6390.
LORENZI, H., MATOS, F. J. A., Plantas medicinais no Brasil nativas e exóticas.
1. Ed. Nova Odessa. SP: Instituto Plantarum de Estudos da Flora, 2002;
MACIEL, M. A. M., PINTO, A. C., JUNIOR, V. F. V. Plantas medicinais: a
necessidade de estudos multidisciplinares. Química Nova, vol. 25, Nº.3, 429-438, Rio de
Janeiro, 2002;
21
MAGALHÃES, H. I. F., Atividade antitumoral (in vitro e in vivo) das fisalinas isoladas
de Physalis angulata Lin., Dissertação de mestrado, 2005);
MENTZ, L. A., VENDRUSCOLO, G. S., SOARES, E. L. C. & VIGNOLISILVA, M.,
Solanaceae nativas no Rio Grande do Sul, Brasil: Listagem II: Solanum L. Revista
Brasileira de Biociências, 5 (supl.2): 1059-1061, 2007;
MOTA, D. K. A. S.; JAYME, L. S. G.; CARMO, F. M.; RIBEIRO, J. B. C.; SOUZA,
R. B. L.; OLIVEIRA, T. L. S.; SANTOS, E. N. Plantas medicinais indicadas como antiinflamatórios por “raizeiros” da região de Goiânia. Infarma, Brasília, v. 16, n. 1-2, p. 81-82,
2004.
SILVA, M. T. G., SIMAS, S. M., BATISTA, T. G. F. M., CARDARELLI, P.,
TOMASSINI, T. C. B., Studies on antimicrobial activity, in vitro, of Physalis angulata
L. (Solanaceae) fraction and physalin B bringing out the importance of assay
determination. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, Vol. 100(7): 779-782, November
2005;
SOARES, E. L. C., VIGNOLI-SILVA, M., VENDRUSCOLO, G. S. & MENTZ, L. A.,
Solanaceae nativas no Rio Grande do Sul, Brasil: Listagem I. Revista Brasileira de
Biociências, 5 (supl.2): 1050-1052, 2007b.
SOARES, E. L. de C. Estudos taxonômicos em Solanaceae lenhosas no Rio
Grande do Sul, Brasil. Dissertação de mestrado, 2006.
SNYDER, L. R., KIKERLAND, J., GLAJCH, J. L. Pratical HPLC Method
Development. 2ª ed. Jonh Wiley & Sons, inc. p. 282-287, 1997;
STEHMANN, J. R. & MENTZ, L. A., Riqueza e endemismo de Solanaceae na
Região Sul do Brasil. In: MARIATH, J. E. A. & SANTOS, R. P. (orgs.). Os avanços da
Botânica no início do século XXI: morfologia, fisiologia, taxonomia e genética. Porto
Alegre, Sociedade Botânica do Brasil. p. 190-193. 2006);
TOMASSINI, T. C. B, BARBI, N. S., RIBEIRO, I. M., XAVIER, D. C. D., Gênero
Physalis – Uma revisão sobre vitaesteróides. Química Nova, v. 23 n. one, p.47-57, Rio
de Janeiro - RJ, 2000;
22
Download