1. (Fgv) Calcule as seguintes somas 2. (Puc-rio) João tem três filhas. A filha mais velha tem oito anos a mais que a do meio que por sua vez tem sete anos mais que a caçula. João observou que as idades delas formam uma progressão geométrica. Quais são as idades delas? Nas 20 primeiras vezes, ela perdeu. Na 21 vez, ela ganhou. Comparando-se a quantia total T por ela desembolsada e a quantia Q recebida na 21 jogada, tem-se que Q é igual a a) T/2 b) T c) 2T d) T-1 e) T+1 5. (Fatec) Se, em uma progressão geométrica, x é o primeiro termo, y é o termo de ordem 2n+1, e z é o termo de ordem 3n+1, então é verdade que a) z¤ = yx£ b) x¤ = yz£ c) x¤ = zy£ d) y¤ = xz£ e) y¤ = zx£ 6. (Fgv) Na equação 3. (Cesgranrio) O número de assinantes de um jornal de grande circulação no estado aumentou, nos quatro primeiros meses do ano, em progressão geométrica, segundo os dados de uma pesquisa constantes na tabela a seguir. o 10 membro é a soma dos termos de uma progressão geométrica infinita. A soma das raízes da equação é: a) 0 b) 1 c) 2 d) 3 e) 4 Em relação ao mês de fevereiro, o número de assinantes desse jornal no mês de abril teve um aumento de: a) 1600 b) 1510 c) 1155 d) 1150 e) 1050 7. (Fgv) A figura indica infinitos triângulos isósceles, cujas bases medem, em centímetros, 8, 4, 2, 1, ... 4. (Fatec) Num certo jogo de azar, apostando-se uma quantia X, tem-se uma das duas possibilidades seguintes: 1 ) perde-se a quantia X apostada; 2 ) recebe-se a quantia 2X. Uma pessoa jogou 21 vezes da seguinte maneira: na primeira vez, apostou 1 centavo; na segunda vez, apostou 2 centavos, na terceira vez, apostou 4 centavos e assim por diante, apostando em cada vez o dobro do que havia apostado na vez anterior. Sabendo que a soma da área dos infinitos triângulos hachurados na figura é igual a 51, podese afirmar que a área do retângulo de lados h e d é igual a a) 68. b) 102. c) 136. d) 153. e) 192. 8. (Fgv) Um círculo é inscrito em um quadrado de lado m. Em seguida, um novo quadrado é inscrito nesse círculo, e um novo círculo é inscrito nesse quadrado, e assim sucessivamente. A soma das áreas dos infinitos círculos descritos nesse processo é igual a a) ™m£/2. b) 3™m£/8. c) ™m£/3. d) ™m£/4. e) ™m£/8. 9. (Fuvest) Uma progressão 12. (Pucrs) A imagem da função f : N ë R é a Progressão Geométrica (1; 4; 16; 64; ....). Os pontos do gráfico de f podem pertencer à curva geométrica tem primeiro termo igual a 1 e razão igual a 2 . Se o produto dos termos dessa progressão é 2¤ª, então o número de termos é igual a: a) 12 b) 13 c) 14 d) 15 e) 16 10. (Mackenzie) Numa progressão geométrica de termos positivos, cada termo é igual à soma dos dois termos seguintes. Então a razão da progressão vale: a) 5 b) -1 + 5 c) (1 + 5 )/2 d) e) ( 13. (Pucsp) Sabe-se que a seqüência (1/3, a, 27), na qual a>0, é uma progressão geométrica e a seqüência (x, y, z), na qual x+y+z=15, é uma progressão aritmética. Se as duas progressões têm razões iguais, então: a) x = - 4. b) y = 6. c) z = 12. d) x = 2y. e) y = 3x. 14. (Uece) Se n é um número inteiro positivo, o produto de todos os números positivos da forma 5 /2 5 - 1)/2 11. (Puc-rio) Um senhor tem a anos de idade, seu filho tem f anos de idade e seu neto, n. Sobre estes valores, podemos afirmar: a) É impossível que a, f e n estejam em progressão aritmética. b) É impossível que a, f e n estejam em progressão geométrica. c) É impossível que a, f e n estejam simultaneamente em progressão aritmética e geométrica. d) É possível que a, f e n estejam simultaneamente em progressão aritmética e geométrica. e) É possível que a, f e n estejam em progressão aritmética, mas é impossível que estejam em progressão geométrica. é a) 5 b) 25 c) 1/5 d) 1/25 15. (Uel) Na figura abaixo, a aresta do cubo maior mede a, e os outros cubos foram construídos de modo que a medida da respectiva aresta seja a metade da aresta do cubo anterior. Imaginando que a construção continue indefinidamente, a soma dos volumes de todos os cubos será: a) 0 b) a¤/2 c) 7a¤/8 d) 8a¤/7 e) 2a¤ 18. (Ufpb) Cecília jogou na loteria esportiva durante cinco semanas consecutivas, de tal forma que, a partir da segunda semana, o valor apostado era o dobro do valor da semana anterior. Se o total apostado, nas cinco semanas, foi R$ 2.325,00, o valor pago por Cecília, no jogo da primeira semana, foi: a) R$ 75,00 b) R$ 85,00 c) R$ 100,00 d) R$ 95,00 e) R$ 77,00 16. (Ufes) Para que a soma dos n primeiros termos da Progressão Geométrica 3,6,12,24,... seja um número compreendido entre 50.000 e 100.000, devemos tornar n igual a a) 16 b) 15 c) 14 d) 13 e) 12 17. (Ufes) Na figura a seguir, o triângulo ABC é equilátero de lado igual a 1. 19. (Ufpel) Uma determinada planta aquática se reproduz intensamente. O número de indivíduos, em condições estáveis, é multiplicado por 3 a cada dia. Se, nas condições normais, iniciando com uma dessas plantas, são necessários 60 dias para preencher a superfície de um lago, iniciando com 3 das referidas plantas, a mesma superfície será preenchida no tempo de a)31 dias. b)20 dias. c)57 dias. d)59 dias.e) 30 dias. 20. (Ufrrj) A seqüência (x, 6, y, z, 162) é uma Progressão Geométrica. É correto afirmar que o produto de x por z vale a) 36. b) 72. c) 108. d) 144. e) 180. Considere o retângulo com dois vértices sobre a base BC e cujos outros dois vértices, B e C são os pontos médios dos lados AB e AC, respectivamente. No triângulo ABC, considere o retângulo com dois vértices sobre a base BC e cujos outros dois vértices, B‚ e C‚ são os pontos médios dos lados AB e AC, respectivamente. Continuando este processo indefinidamente, obtém-se uma seqüência de retângulos. A soma das áreas totais de todos os retângulos assim obtidos é igual a a) 3 /24 b) 3 /12 c) 3 /8 d) 3 /6 e) 3 /3 21. (Ufsc) Sabendo que a seqüência (1-3x, x-2, 2x+1) é uma P.A. e que a seqüência (4y, 2y-1, y+1) é uma P.G., determine a soma dos números associados à(s) proposição(ões) VERDADEIRA(S). 01. A P.A. é crescente. 02. O valor de y é 1/8. 04. A soma dos termos da P.A. é zero. 08. -3/2 é a razão da P.G. 16. O valor de x é 2. 22. (Ufsm) Numa plantação de eucaliptos, as árvores são atacadas por uma praga, semana após semana. De acordo com observações feitas, uma árvore adoeceu na primeira semana; outras duas, na segunda semana; mais quatro, na terceira semana e, assim por diante, até que, na décima semana, praticamente toda a plantação ficou doente, exceto sete árvores. Pode-se afirmar que o número total de árvores dessa plantação é a) menor que 824. b) igual a 1030. c) maior que 1502. d) igual a 1024. e) igual a 1320. 23. (Ufv) Se a soma dos n primeiros termos de uma progressão geométrica (P. G.) é dada por SŠ=1(1/2¾), onde nµ1, então o nono termo desta P.G. é: a) 2−© b) 2−¢¡ c) 2−ª d) 2© e) 2ª 24. (Unb) Conta uma lenda que o rei de certo país ficou tão impressionado ao conhecer o jogo de xadrez que quis recompensar seu inventor, dandolhe qualquer coisa que ele pedisse. O inventor, então, disse ao rei: "Dê-me simplesmente 1 grão de trigo pela primeira casa do tabuleiro, 2 grãos pela segunda casa, 4 grãos pela terceira, 8 grãos pela quarta e assim sucessivamente, até a 64.ò casa do tabuleiro". O rei considerou o pedido bastante simples e ordenou que fosse cumprido. Supondo que um grão de trigo tem massa igual a 0,05 g e que a produção mundial de trigo em 1997 foi de 560 milhões de toneladas, julgue os itens abaixo. (1) O número de grãos de trigo devido ao inventor apenas pela 11.ò casa do tabuleiro é menor que 1.000. (2) Até a 30.ò casa, seriam devidas ao inventor mais de 50 toneladas de grãos. (3) A quantidade de trigo devida apenas pela 31.ò casa corresponde à quantidade recebida até a 30.ò casa acrescida de um grão. (4) Seriam necessárias mais de 1.000 vezes a produção mundial de trigo de 1997 para recompensar o inventor. 25. (Unb) Considere a seguinte seqüência de resistores de 1 ², em que se acrescenta em cada passo , alternadamente, um resistor em série e outro em paralelo com o conjunto de resistores do passo anterior. Sabendo que, se dois resistores de S² e T² estão em série, a resistência equivalente é igual à soma (S+T)² e que, caso estejam em paralelo, a resistência equivalente, R, é dada por 1/R=(1/S)+(1/T), e considerando R(n) a resistência equivalente total obtida no n-ésimo passo da seqüência acima descrita, julgue os itens que se seguem. (1) O 7° passo da seqüência dará origem a uma associação de resistores equivalente à mostrada acima. (2) R(6) = (13/8) ² (3) Se R(2j) = a‚Œ/b‚Œ, em que j, a‚Œ e b‚Œ são números naturais, com jµ1, então a‚Œø=a‚Œ e a‚Œ=a‚Œ÷+b‚Œ÷, para todo jµ1. (4) Se a seqüência fosse constituída somente por resistores em série, iniciando com um resistor de 1² e, em cada passo, incluindo-se um resistor de resistência igual ao dobro do último resistor acrescentado, então a resistência total obtida no 100° passo seria igual a (2¢¡¡-1)². 26. (Unesp) A seqüência de números reais a, b, c, d forma, nessa ordem, uma progressão aritmética cuja soma dos termos é 110; a seqüência de números reais a, b, e, f forma, nessa ordem, uma progressão geométrica de razão 2. A soma d+f é igual a: a) 96. b) 102. c) 120. d) 132. e) 142. 27. (Unirio) O número que deve ser subtraído de 1, de 11/8 e de 31/16 para que os resultados formem uma P.G., nesta mesma ordem, é: a) 2 b) 1/2 c) 1/4 d) 1/8 e) 1/16 28. (Unirio) Num vídeo-game, um ponto luminoso se encontra em A sobre um segmento åæ de medida 12. Ao iniciar-se o jogo, o ponto luminoso se desloca para B e retorna, perfazendo na volta uma distância igual à metade do caminho anterior, até um ponto C. Depois, retorna de C, no sentido do ponto B, percorrendo a metade do último percurso, até um ponto D e, assim, sucessivamente. Repetindo tal procedimento infinitas vezes, o ponto luminoso tende para um ponto cuja distância de A é igual a: a) 7,4 b) 7,6 c) 7,8 d) 8 e) 9 29. (Unirio) Há exatamente um ano, José iniciou uma criação de coelhos e, durante este período, o número de coelhos duplicou a cada 3 meses. Hoje, preocupado com a falta de espaço para os coelhos, José vai vender parte dessa criação, de modo que apenas a quantidade inicial fique com ele. Se N³ denota a quantidade inicial de coelhos, então a quantidade a ser vendida é a) 15 N³ b) 13 N³ c) 12 N³ d) 8 N³ e) 7 N³ 30. (Unitau) A soma dos termos da seqüência (1/2;1/3;2/9;4/27;...) é: a) 15 × 10−¢. b) -3 × 10−¢. c) 15 × 10−£. d) 5 × 10−¢. e) 3/5. GABARITO 1. a) 440 b) 10 2. 49, 56 e 64 anos 3. [C] 4. [E] 5. [D] 6. [A] 7. [C] 8. [A] 9. [B] 10. [E] 11. [C] 12. [A] 13. [A] 14. [A] 15. [D] 16. [B] 17. [D] 18. [A] 19. [D] 20. [C] 21. 01 + 02 + 04 + 08 + 16 = 31 22. [B] 23. [C] 24. F V V V 25. F V V V 26. [D] 27. [C] 28. [D] 29. [A] 30. [A]