MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO Diferentemente do MRU, o movimento retilíneo uniformemente variado- também conhecido por MRUV-, demonstra que a velocidade varia uniformemente em razão ao tempo. O Movimento retilíneo uniformemente variado (MRUV) pode ser definido como um movimento de um móvel em relação a um referencia ao longo de uma reta, na qual sua aceleração é sempre constante . Diz-se que a velocidade do móvel sofre variações iguais em intervalos de tempo iguais. No MRUV a aceleração média assim como sua aceleração instantânea são iguais. Obs:A aceleração instantânea refere-se a um determinado intervalo de tempo “t” considerado, definida matematicamente por; α=limΔt->0=Δv/Δt. Para o estudo da cinemática no ensino médio não é especialmente necessária sabermos a conceituação matemática de aceleração instantânea, uma vez que envolve limites assim como diferenciais que só são vistos na maioria das vezes no ensino superior em relação aos cursos de exatas. Basta sabermos o cálculo da aceleração média pois ambas no MRUV são iguais como mencionado acima. Função da velocidade determinada no MRUV Para obtermos a função velocidade no MRUV devemos relembrar e aplicar o conceito de aceleração média. αm=ΔV/Δt Δv: Variação de velocidade Δt: Variação de tempo Vejamos o exemplo a seguir. 1) Um carro encontra-se parado em uma rodovia federal devido uma colisão de 2 veículos que estão impedindo o tráfego normal na pista. Imediatamente os 2 veículos são retirados da pista e a mesma é liberada. O condutor do carro que estava parado então acelera o carro (pisa no acelerador), depois de passados 5s o velocímetro do carro marca 30 km/h. Qual foi a aceleração média do carro? αm=ΔV/Δt 30km/h=8,33m/s αm=8,33-0/5 αm=1,66m/s2 Então, considerando como o exemplo acima o móvel com velocidade inicial v0 no instante t0=0s e num instante posterior adquire uma velocidade v num instante de tempo t, temos: α=ΔV/Δt α=V-Vo/t-to Como t0=0s, segue a=V-V0/t Isolando V, V=V0+at Movimento acelerado e retardado Movimento acelerado: tomemos como exemplo a função v=15+2t. Sabemos que sua velocidade inicial é v0=15m/s e a aceleração constante do movimento é igual a 2m/s2, podemos perceber que qualquer valor para t positivo ou igual a 0 (t≥0)a velocidade sempre será positiva, logo o movimento é acelerado. Movimento retardado: tomemos como exemplo a função v=-6+2t. Sabemos que sua velocidade inicial é vo=6m/s e sua aceleração constante é a=2m/s2,podemos perceber que para 0≤ t<3 o movimento é retardado, e para t=3 a velocidade do móvel se anula, assim sendo para t>3 o móvel muda de sentido passa de retardado para acelerado. 2) Exemplo A velocidade de uma partícula varia de acordo com a função v=4+8t.Pede-se a) A velocidade inicial da partícula b) A aceleração da partícula c) A velocidade da partícula no instante t=2s d) A variação de velocidade nos 4 primeiros segundos Resolução a) Como V=vo+at ,temos v=4+8t ,então vo=4m/s b) Sua aceleração é constante característica do MRUV,a=8m/s2 c) V=4+8.2=20m/s d) V4= 4+8.4=36m/s ; Então ΔV= V4-V0=36-4=32m/s Função Horária do MRUV Sabendo-se que a aceleração no MRUV permanece constante podemos calcular a variação do espaço de um móvel no decorrer do tempo. S=So+Vot+at2/2 A fórmula acima constitui uma função quadrática (2ºgrau). 3)Vejamos um exemplo rápido. Determine a velocidade inicial o espaço inicial e a aceleração do móvel uma vez que o mesmo encontra-se em MRUV seguindo a função S=20-2t+t2 Resolução Como S=So+Vot+at2/2,temos So=20m V0=-2m/s a= 1×2=2m/s2 Equação de Torricelli Se substituirmos a equação V=vo+at na equação S=So+Vot+at2/2, teremos a equação de Torricelli V2=v02+2αΔs 4)Exemplo: Um determinado veículo em certo instante, possui uma velocidade de 20m/s. A partir deste instante o condutor do veiculo acelera seu carro constantemente em 4m/s2.Qual a velocidade que o automóvel terá após ter percorrido 130m. Resolução: Aplicando a equação de Torricelli, temos V2=v02+2αΔs V2=202+2.4.130 V2=400+1040 V2=1440 V=38m/s Referência Bibliográfica: Física Básica. Volume único- Nicolau e Toledo