LEI DOS SENOS 1. Uma pessoa se encontra no ponto A de uma planície, às margens de um rio e vê, do outro lado do rio, o topo do mastro de uma bandeira, ponto B. Com o objetivo de determinar a altura h do mastro, ela anda, em linha reta, 50 m para a direita do ponto em que se encontrava e marca o ponto C. Sendo D o pé do mastro, avalia que os ângulos BÂC e valem 30°, e o vale 105°, como mostra a figura: a) 12,5. b) 12,5 2 . c) 25,0. d) 25,0 2 . e) 35,0. 2. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua proximidade com a região metropolitana torna-o suscetível aos impactos ambientais causados pela atividade humana. A distância do ponto B ao ponto C é de 8 km, o ângulo A mede 45° e o ângulo C mede 75°. Uma maneira de estimar quanto do Delta do Jacuí está sob influência do meio urbano é dada pela distância do ponto A ao ponto C. Essa distância, em km, é 8 6 3 b) 4 6 a) c) 8 2 3 d) 8( 2 3) e) 2 6 3 3. Um grupo de escoteiros pretende escalar uma montanha ate o topo, representado na figura abaixo pelo ponto D, visto sob ângulos de 40° do acampamento B e de 60° do acampamento A. Dado: sen 20º 0,342 Considerando que o percurso de 160 m entre A e B e realizado segundo um angulo de 30° em relação a base da montanha, então, a distância entre B e D, em m, e de, aproximadamente, a) 190. b) 234. c) 260. d) 320. 4. A prefeitura de certa cidade vai construir, sobre um rio que corta essa cidade, uma ponte que deve ser reta e ligar dois pontos, A e B, localizados nas margens opostas do rio. Para medir a distância entre esses pontos, um topógrafo localizou um terceiro ponto, C, distante 200m do ponto A e na mesma margem do rio onde se encontra o ponto A. Usando um teodolito (instrumento de precisão para medir ângulos horizontais e ângulos verticais, muito empregado em trabalhos topográficos), o topógrafo observou que os ângulos B Ĉ A e C Â B mediam, respectivamente, 30º e 105º, conforme ilustrado na figura a seguir. Com base nessas informações, é correto afirmar que a distância, em metros, do ponto A ao ponto B é de: a) 200 2 b) 180 2 c) 150 2 d) 100 2 e) 50 2 5. Na instalação das lâmpadas de uma praça de alimentação, a equipe necessitou calcular corretamente a distância entre duas delas, colocadas nos vértices B e C do triângulo, segundo a figura. Assim, a distância "d" é a) 50 2 m ( 6) m 3 c) 50 3 m b) 50 d) 25 6 m e) 50 6 m 6. Uma ponte deve ser construída sobre um rio, unindo os pontos A e B, como ilustrado na figura a seguir. Para calcular o comprimento AB, escolhe-se um ponto C, na mesma margem em que B está, e medem-se os ângulos CBA = 57° e ACB = 59°. Sabendo que BC mede 30m, indique, em metros, a distância AB. (Dado: use as aproximações sen(59 °) ≈ 0,87 e sen(64°) ≈ 0,90) g 7. Supondo a) 1,15 b) 1,25 c) 1,30 d) 1,35 e) 1,45 3 = 1,7, a área do triângulo da figura vale: 8. Para calcular a distância entre duas árvores situadas nas margens opostas de um rio, nos pontos A e B, um observador que se encontra junto a A afasta-se 20m da margem, na direção da reta AB, até o ponto C e depois caminha em linha reta até o ponto D, a 40m de C, do qual ainda pode ver as árvores. Tendo verificado que os ângulos DCB e BDC medem, respectivamente, cerca de 15 ° e 120°, que valor ele encontrou para a distância entre as árvores, se usou a aproximação 6 = 2,4? 9. No triângulo ABC, os lados AC e BC medem 8 cm e 6 cm, respectivamente, e o ângulo A vale 30 °. O seno do ângulo B vale: a) 1/2 b) 2/3 c) 3/4 d) 4/5 e) 5/6