TRABALHO 4 ESPECTROS ELECTRÓNICOS E PROPRIEDADES MAGNÉTICAS DE COMPLEXOS DE METAIS DE TRANSIÇÃO 1. OBJECTIVO Estudo de espectros electrónicos de complexos de metais de transição - sistema d1, d3, d8. Determinação e interpretação das bandas de absorção de [Ti(H2O)6]3+, [Cr(H2O)6]3+, [Cr(H2O)4Cl2]+, [Ni(H2O)6]2+, [Ni (NH3)6]2+, [Ni (NO2)6]4-, [Ni(en)3]2+, e [Ni (EDTA)]2-. 2. INTRODUÇÃO ESPECTROS ELECTRÓNICOS DE COMPLEXOS DE METAIS DE TRANSIÇÃO A principal característica da teoria do campo de ligandos é considerar os ligandos como uma perturbação sobre os electrões d do ião metálico central. Os ligandos são assim encarados como cargas ou dipolos pontuais e calcula-se a polarização dos electrões d do catião central exercida pelo campo electrostático dos ligandos. Pela teoria do campo de ligandos a degenerescência dos orbitais d é levantada por um campo de ligandos com simetria não-esférica. As orbitais serão desdobradas (o tipo de desdobramento dependendo da simetria do campo de ligandos) enquanto que a quantidade de desdobramento depende da força de perturbação. Se existe uma disposição octaédrica regular dos ligandos, a perturbação electrostática diferencia entre os dois conjuntos de orbitais equivalentes dxy, dxz e dyz , designados por t2g, e dz2 e dx2-y2 , designados por eg; as orbitais eg são mais destabilizadas do que as t2g. O nível d é assim subdividido em dois conjuntos de orbitais. A diferença de energia entre estes dois grupos de orbitais é designada por Δ. No caso tetraédrico o desdobramento é semelhante mas invertido. O valor de Δoctaédrico é maior do que o Δtetraédrico. Neste último caso existem menos repulsões devido à presença de apenas 4 ligandos (em vez de 6 - caso octaédrico) e ao facto de os ligandos não apontarem directamente às orbitais. eg Δoct 3/5 Δoct 2/5 Δoct t2g campo octaédrico t2g 2/5 Δtet simetria esférica 3/5 Δtet Δtet eg campo tetraédrico Ao interpretar o número e a energia relativa da bandas de absorção de metais de transição com mais de um electrão d torna-se necessário determinar as configurações electrónicas do estado fundamental e estados excitados. Não esquecer que as transições com maior intensidade correspondem aquelas que ocorrem entre estados com o mesmo grau de multiplicidade. Consideremos um exemplo em detalhe. Complexo tetraédrico - VCl-4 (d2) a) Estado Fundamental: configuração electrónica eg2 t2g eg grau de multiplicidade = 3 = n+1, sendo n o numero de electrões desemparelhados termo espectroscópico 3A (A para singuleto) b) 1º Estado excitado : eg1 t2g1 t2g eg existem seis possibilidades equivalentes tendo em conta que por cada electrão em eg existem três possibilidades em t2g Esta configuração dá origem a dois estados tripletos (T) que podem ser descritos do seguinte modo: dxy1 dz21 dxz1 dx2-y21 dyz1 dx2-y21 } 3 T dxy1 dx2-y21 dxz1 dz21 } dyz1 dz21 3 T’ O termo 3T tem uma energia de repulsão electrónica menor do que 3T’. c) 2º Estado Excitado : t2g2 t2g eg Deste modo as energias relativas dos estados no complexo tetraédrico d2 serão t2g2 3 3 T T’ eg1 t2g1 eg2 e devem ser observadas 3 bandas: 3 3 T A 3 A 3 3 3 T T' T NOTA: A análise do sistema octaédrico d8 é equivalente. É interessante notar que se invertermos os diagramas energéticos acima mencionados obtemos os diagramas de campo tetraédrico d8 e octaédrico d2. DETERMINAÇÃO DAS PROPRIEDADES MAGNÉTICAS DE COMPLEXOS DE METAIS DE TRANSIÇÃO A determinação do número de electrões desemparelhados num composto de coordenação pode ser determinante para a interpretação da estrutura desse composto. As Teorias do Enlace de Valência e do Campo Cristalino podem recorrer a estas medidas experimentais de modo a interpretar as propriedades eléctricas e magnéticas de muitos compostos de metais de transição. Por exemplo, a determinação experimental do momento magnético pode levar a uma interpretação estrutural: no caso dos compostos [NiCI4]2- (μexp = 5,92 MB) e [Ni(CN)4]2- (μexp = 0 MB) pode concluir-se sobre que estrutura de número de coordenação 4 (tetraédrica ou quadrangular plana) é adoptada por cada um destes compostos (ver Questionário). O método mais vulgarmente utilizado para medir susceptibilidades magnéticas (medida directamente relacionada com o número de electrões desemparelhados) é o método de Gouy, utilizando a chamada "Balança de Guoy" que se representa esquematicamente a seguir: Neste arranjo experimental, a amostra a medir é introduzida num suporte situado entre os pólos de um magneto, estando esse suporte ligado ao braço de uma balança que mede a força aplicada sob a amostra. Essa força resulta da interacção do campo magnético uniforme gerado pelo magneto (H) com o magnetismo da própria amostra. O valor da força que actua na amostra é dada, em unidades c.g.s, pela fórmula (1): F = ½ Xv A H2 (1) Em que Xv= susceptibilidade volumétrica da amostra A = área seccional da amostra F = δ (m) g X v = Xg d A = m /l d Δm = alteração aparente, em massa (expressa em grama), por aplicação do campo magnético g = aceleração da gravidade (981 cm.s-2) m = massa da amostra, em grama d = densidade da amostra em g.cm-3 l = comprimento da amostra em cm Portanto, Xg = [2 g l Δm] / H2 m (2) Sendo H mantido constante, a fórmula (2) toma a forma: Xg = [C Δm l] / m (3) Em que C é uma constante. A Balança Magnética a utiIizar neste trabaIho, da marca Sherwood Scientific, tem de facto um princípio de funcionamento ligeiramente diferente da tradicional Balança de Guoy: o seu funcionamento baseia-se já não na medição da força exercida pelo magneto na amostra a analisar, mas na força de igual intensidade mas sentido oposto que a amostra exerce num magneto permanente que se encontra suspenso. Pode ser utilizada a expressão geral (4) para a susceptibilidade por massa (Xg), em unidades c.g.s. Xg = 1/m [C (R - R0)] (4) Onde: C = constante de proporcionalidade R = leitura obtida para o tubo com a amostra R0 = leitura obtida para o tubo vazio l = comprimento da amostra (cm) m = massa da amostra (grama) A constante de proporcionaIidade C está relacionada com a constante de calibração, intrínseca a cada balança, pela fórmula (5): C = CBal*10-9 (5) No caso da balança existente no Departamento, CBal = 1,14. A susceptibilidade molar pode ser ca1culada pela fórmula (6): Xm=Xg * MM (6) Para um ião metálico paramagnético, é costume utilizar o momento magnético efectivo (μeff) do ião, expresso em magnetões-bohr (MB). Esta grandeza pode ser ca1culada de modo aproximado pela fórmula (7), onde T é a temperatura absoluta (em K). μeff = 2,828 √ (Xm T) (7) 0 momento magnético efectivo (μeff) pode ser relacionado com o número de electrões desemparelhados (n), pela fórmula (8) μeff = √ [n (n+2)] (8) É em seguida fornecida uma Tabela de valores de μeff em função de n: n 1 2 3 4 5 μeff (MB) 1,73 2,83 3,87 4,90 5,92 3. PARTE EXPERIMENTAL 3.1. PREPARAR AS SEGUINTES SOLUÇÕES AQUOSAS: [Ti(H2O)6]3+, [Cr(H2O)6]3+, [Cr(H2O)4Cl2]+, [Ni(H2O)6]2+, [Ni (NH3)6]2+, [Ni (NO2)6]4-, [Ni(en)3]2+, e [Ni (EDTA)]2-. a) Ti(H2O)63+ - solução 3% a partir de uma solução aquosa de titânio (III) a 30%. b) Cr(H2O)6]3+ - 0,25g de sulfato duplo de crómio e potássio (K2SO4 /Cr2 (SO4)3.24 H2O) em 10 ml de H2O. c) [Cr(H2O)4Cl2]+ - 0,1g de cloreto de crómio hidratado (CrCl3.6H2O) em 10 ml de H2O. d) [Ni(H2O)6]2+ - 0,2g de cloreto de níquel (NiCl2 . 6H2O) em 5 ml de H2O. e) [NiCl6]4- - 0,2 g de cloreto de níquel em 5 ml de HCl concentrado f) [Ni (NH3)6]2+ - 0,2 g do complexo sintetizado no Trabalho 2, em 10 ml de amónia concentrada diluída 1:2. Se necessário, filtrar a solução. g) [Ni(en)3]2+ - 0,2 g de cloreto de Ni(II) + 3 ml de sol. Etilenodiamina + 2 ml de H2O. h) [Ni (EDTA)]2- - 0,2 g de cloreto de Ni(II) + 5 ml de H2O + EDTA em pó (até deixar de haver alteração de cor). 3.2. Determinar os espectros electrónicos destes compostos em solução aquosa na gama 300-850 nm. Use células com 1 cm de percurso óptico. NOTA: Nos compostos de Cr (III) uma das bandas não pode ser observada devido a estar sobreposta com uma banda de transferência de carga. O Composto de Ni (II) apresenta uma banda adicional a 935 nm. 3.3. OPERAÇÃO DA BALANÇA MAGNÉTICA 1. Virar o botão "RANGE" para a indicação de escala "x 1" e deixar aquecer o aparelho durante 10 minutos. 2. Ajustar o botão do "ZERO" até obter uma leitura de 000. 3. Colocar um tubo de amostra vazio, de massa conhecida, no guia de tubos de amostra e medir o valor de R0. 4. Empacotar a amostra uniformemente e de modo a que fique o mínimo possível de ar intersticial. Determinar a massa da amostra, em grama, assim como o seu comprimento, em cm. 5. Colocar o tubo de amostra cheio no guia de tubos de amostra e medir o valor de R. N.B.: um valor negativo para R é indicativo de diamagnetismo. 6. Se o valor sair da escala, rodar o botão "RANGE" para a indicação de escala "x10", tornar a ler o zero (passo 2) e multiplicar a leitura obtida por 10. A susceptibilidade em massa será dada por: Xg = [CBal l (R-R0)]/(109m) Onde: CBal = constante da balança = 1,14 R = leitura obtida para o tubo com a amostra Ro = leitura para o tubo vazio l = comprimento da amostra (cm) m = massa da amostra (grama) 3.3.1. Seguindo o método acima enunciado, meça os valores de R para os seguintes compostos: - [Ni(OC6H4CHO)2(H2O)2] (Composto sintetizado no Trabalho 2) - CoCl2.6H2O Turno Grupo Data QUESTIONÁRIO 1. Complete a tabela tendo em conta os espectros electrónicos que obteve para os complexos de Ti3+, Cr3+ e Ni2+. Sistema d Valores de λ max (nm) E (cm-1) [Ti(H2O)6]3+ [Cr(H2O)6]3+ [Cr(H2O)4Cl2]+ [Ni(H2O)6]2+ [Ni Cl6]4[Ni (NH3)6]2+ [Ni(en)3]2+ [Ni (EDTA)]2- 2. Com base na Teoria do Campo de Ligandos preveja o número de transições electrónicas d-d para os sistemas d1, d3 e d8. 3. Tendo em conta a alínea anterior, interprete os espectros obtidos para os compostos de Cr3+ e Ni2+. 4. Interprete o espectro obtido para o complexo [Ti(H2O)6]3+, com base no efeito de Jahn-Teller. 5. Calcule o valor de Δoctaédrico e a respectiva EECL para os complexos em estudo. Complexo [Ti(H2O)6]3+ [Cr(H2O)6]3+ [Cr(H2O)4Cl2]+ [Ni(H2O)6]2+ [Ni Cl6]4[Ni (NH3)6]2+ [Ni(en)3]2+ [Ni (EDTA)]2- Δoctaédrico (cm-1) EECL (cm-1) 6. Construa uma série espectroquímica para os ligandos tendo em conta os valores de Δoctaédrico para os compostos de Ni2+. Explique também a variação encontrada para os dois complexos de Cr3+. 7. Compare os valores de Δoctaédrico dos aquo complexos de Ni2+ e Cr3+. Dê uma explicação. 8. Determinação de momento magnético 8.1. Calcule o valor de Xg para cada um dos compostos. 8.2. Utilizando as fórmulas de cálculo da susceptibilidade molar (Xm) e do momento magnético efectivo μeff, calcule o número de electrões desemparelhados (n) para cada um dos compostos. 8.3. Com base nos valores de n obtidos, sugira configurações electrónicas para o ião metálico central nos complexos.