conexões com a matemática 1 banco De questões

Propaganda
conexões com
a matemática
DVD do professor
banco De questões
Capítulo 4
Função quadrática
1
banco De questões
Grau de dificuldade das questões:
Fácil
capítulo 4
Difícil
9. Obtenha,seexistir,oszerosdasseguintesfunções
Função quadrática
quadráticas.
1. Dadasasfunçõesreaisabaixo,verifiquequaléqua-
a) f(x)5x 223x15
drática e, então, determine o valor de seus coeficientesa,bec.
b)g(x)5x 212x–3
a) f(x)5(x12)(32x)
b) g (x) 5
Médio
2x3 2 4x2
,sexi0eg(0)524
x2
3x
1
1 ,determineovalor
4
2
daexpressãoQ5h(22)2h(4).
2. Sabendoqueh (x) 5 x2 1
3. (Faap-SP)Sendof(x)5ax21bx1c,coma,b e creais
c) h(x)52x 22x 2
1
4
10. Umaempresafezumestudoeobteveumaestimativa
da quantidade de toneladas que deverão ser vendidasaolongodotempoparaqueumdeseusprodutos
permaneçaomáximopossívelnomercado.
Quantidade vendida (tonelada)
Q (25)
eai0,sendof(2)50,f(1)50ef(0)53,qualé,então,f(x)?
4. (Unicamp-SP)Duranteumtorneioparaolímpicode
arremessodepeso,umatletateveseuarremessofilmado.Combasenagravação,descobriu-seaaltura
(y) do peso em função de sua distância horizontal
(x),medidaemrelaçãoaopontodelançamento.Algunsvaloresdadistânciaedaalturasãofornecidos
natabelaaseguir.Sejay(x)5ax21bx1cafunção
quedescreveatrajetória(parabólica)dopeso.
0
25
50
Tempo (ano)
Considerandoográfico,responda.
a) Espera-sequeesseprodutopermaneçanomercadoporquantosanos?
b)Após quanto tempo no mercado esse produto
deveráatingiraquantidademáximadetoneladasvendidas?
Distância (m)
Altura (m)
1
2,0
c) Sabendo que a lei matemática que determina
2
2,7
3
3,2
a quantidade de toneladas vendidas (Q(t)) ao
longo do tempo (t) é: Q(t) 5 50t 2 t2, calcule a
quantidade de toneladas que se espera vender
noanoemqueestáprevistaamaiorvenda.
a) Determineosvaloresdea,bec.
b)Calcule a distância total alcançada pelo peso
nessearremesso.
5. Emcadacaso,identifiqueseaparábolacorrespon-
11. (Insper)Ográficodafunçãodadapelalei
y5ax21 bx1c,coma≠0,éaparábolaesboçada
abaixo,quetemvérticenopontoV.
denteàfunçãoftemsuaconcavidadevoltadapara
cimaouparabaixo.Justifiquesuaresposta.
y
a) f(x)52x 222x13
x2
2 3x
4
c) f(x)522x 22x
b)f(x)5
d)f(x)53x 215
0
x
6. (Espcex-SP)Seográficodafunçãotrinômiodose-
gundograuf:x→ax 21bx1cinterceptaoeixox,
nospontos(21,0)e(2,0)eaindaf(0)56,entãoqual
éovalordocoeficienteb?
7. Escrevaaleidafunçãocorrespondenteàparábola
quepassapelospontos(0,24),(1,0)e(2,6).
8. Determineopontodeintersecçãocomoeixoydas
parábolasrepresentadaspelasfunçõesabaixo.
a) f(x)5x 223x12
b)g(x)5
2
1
x
x
2
2 4
3
4
c) h(x)52x 225x
d) t(x)5x 227
V
Apartirdoesboço,pode-seconcluirque:
a) a.0,b.0ec.0
b)a.0,b.0ec,0
c) a.0,b,0ec.0
d)a.0,b,0ec,0
e) a,0,b,0ec,0
conexões com
a matemática
DVD do professor
banco De questões
Capítulo 4
Função quadrática
12. (FGV)Arepresentaçãocartesianadafunção
umgolfinhoquesaltaeretornaàágua,tendooeixo
dasabscissascoincidentecomasuperfíciedaágua.
f(x)5ax21 bx1céaparábolaabaixo.
y
2
Altura
(metro)
1
0
x
0
Tempo
(segundo)
–2
Tendoemvistaessegráfico,podemosafirmarque:
a) a, 0,d,0,c. 0
–4
b)a.0,d.0,c.0
c) a, 0,d.0,c. 0
d)a , 0,d. 0,c, 0
e) a, 0,d, 0,c, 0
13. Esboceográficodasfunçõesquadráticasaseguir.
a) Sabendo que a parte negativa do gráfico de f é
constituídaporsegmentosderetas,determinea
expressão matemática de f nos instantes anterioresàsaídadogolfinhodaágua.Emqueinstanteogolfinhosaiudaágua?
b) Apartepositivadográficodeféformadaporparte
a) f(x)5 x 223x
b)g(x)5x 222
14. (Unifal-MG)Nafiguraabaixo,têm-seosesboçosdos
gráficosdef(x)5x 21x22eg(x)5ax1b.
y
3
deumaparábola,dadaporf(t)52 t 216t29.
4
Determinequantossegundosogolfinhoficoufora
daáguaeaalturamáxima,emmetro,atingidano
salto.
18. (UFT-TO)Umaempresadoramodeconfecçõespro-
0
2
x
duz e comercializa calças jeans. Se x representa a
quantidadeproduzidaecomercializada(emmilharesdeunidades)eL(x)52x2148x210representaolucro(emmilharesdereais)daempresapara
x unidades, então o lucro máximo que a empresa
poderáobteré:
a) R$566.000,00
b)R$423.000,00
Écorretoafirmarqueasconstantesa e bsãonúmerosinteirostaisque:
a) aebsãopares.
b)aebsãoímpares.
c) aéímparebépar.
d)aéparebéímpar.
15. (Fuvest-SP)Considereaparáboladeequação
y 5x 21mx14m.
a) Ache a intersecção da parábola com o eixo x
quandom522.
b)Determine o conjunto de valores de m para os
quaisaparábolanãocortaoeixox.
16. Paracadaumadasseguintesfunções,determineas
coordenadasdovérticedaparábolaassociadaaela
everifiqueseaordenadadovérticeéovalormáximooumínimodafunção.
c) R$653.000,00
d)R$745.000,00
e) R$358.000,00
19. (UFBA)Emumterrenoplanoehorizontal,estáfixado
um mastro vertical com 13,5 metros de altura. Do
topodomastro,élançadoumprojétil,descrevendo
umatrajetóriademodoquesuaaltura,emrelação
ao terreno, que é uma função quadrática de sua
distânciaàretaquecontémomastro.Oprojétilalcançaaalturade16metros,quandoessadistância
éde3metros,eatingeosolo,quandoadistânciaé
de 27 metros.Determine,emmetro,aalturamáximaalcançadapeloprojétil.
20. (Mackenzie-SP)Se f d
3
25
éomáximodeuma
n5
2
4
função quadrática f e se (21, 0) é um ponto do
gráficodef,entãof(0)éiguala:
a) f(x)52x 22x16
a) 5
2
b)4
2
b)f(x)5x 23x
17. (Vunesp)Ográficorepresentaumafunçãofquedescreve,aproximadamente,omovimento(emfunção
dotempotemsegundo),porumcertoperíodo,de
c) 3
d)21
e) 2
conexões com
a matemática
DVD do professor
banco De questões
Capítulo 4
21. (Udesc)A taxa de evaporação de água em um reservatóriodependedacondiçãoclimática. Em um
modelosimplificado,essataxa,E,podeserdescrita
por:
Sendo v a velocidade constante do vento, e para
este problema vale 10 m/s, e U(x) a umidade relativa do ar, sendo dependente da diferença entre
concentraçãodearevapordeáguaporvolume(variávelx)definidaporU(x)5x11.
Determine:
3
24. Resolva,emR,asseguintesinequaçõesdo2°grau.
a) x227x110,0
b)(2x212x 27)8(2x 23)>0
c)
E5v(22(U(x))2)1v(U(x))
2x2 1 81
<0
x29
25. Considereafunçãof(x)5x 22x 22.
a) Determineospontosondef(x)interceptaoeixox
eoeixoy.
b)Essa função possui valor máximo ou mínimo?
Determineessevalor.
a) Paraquevalordexataxadeevaporaçãoézero?
c) Resolvaainequaçãof(x)> 0.
b)Qualovalordexemqueataxadeevaporaçãoé
d)Façaográficodef(x)5x 22x 22e,apartirdele,
máxima?
resolvaadupladesigualdade:22,x 22x 22, 0
c) Qualovalormáximodataxadeevaporação?
d)Sex50,qualataxadeevaporação?
seja-secercartrêsladosdeumterrenosituadoàs
margens de um rio, de modo que ele fique com a
formaretangular,conformeafiguraabaixo.
26. (Fuvest-SP)Oconjuntosoluçãode
(2x 217x2 15)(x211),0é:
22. (UFG-GO) Para a construção de uma pousada, de-
Função quadrática
a) 0
b)[3,5]
c) R
d)[21,1]
e) R1
y
27. (Unioeste-PR) Uma fábrica de calçados vende
x
x
rio
Sabe-se que o metro linear da cerca paralela ao
rio custa R$ 12,00, das cercas perpendiculares
aoriocustamR$8,00equeoproprietárioirágastar
R$3.840,00comaconstruçãototaldacerca.
Nessascondições,construaográficodafunçãoque
representaaáreadoterreno,emfunçãodadimensão x, e determine as dimensões do terreno para
queasuaáreasejamáxima.
23. Mostreque,dadoumperímetrofixok,oretângulo
deáreamáximaéumquadrado.
200 pares por semana se o preço for mantido em
R$ 20,00 o par. Ela constatou que, em média, para
cada real de aumento no preço de venda dos sapatosháumareduçãosemanaldequatroparesno
total das vendas. Com base nestas informações,
pode-seconcluirque,paraqueaempresatenhaa
maiorreceitasemanalpossível,eladeveráelevaro
preçodoscalçadospara:
a) R$25,00
b)R$31,00
c) R$30,00
d)R$28,00
e) R$35,00
28. Obtenhaodomíniodafunção: f _x i 5
x
x 2 16
2
29. (PUC)Noconjuntodosnúmerosreais,determineo
domíniodafunção f _x i 5
x2 2 2x 1 1
.
x2 2 2x 2 3
Download