DISCIPLINA: FISICA II - Eletricidade e Magnetismo http://cursos.if.uff.br/fisica2 INFORMAÇÕES IMPORTANTES: 1. Plano do curso: o que será visto em cada aula 2. As datas de todos exames 3. Os critérios de aprovação 4. O(s) livro(s) texto(s) 5. As listas de exercícios sugeridos para cada capítulo 6. Os horários e locais de atendimento extra-classe 7. Curiosidades e links de interesse Projeto Sei Mais Fisica Aulas do Prof. Ernesto sobre Eletricidade http://www.youtube.com/playlist?list=PL37711CAF630F625D FISICA II - Eletricidade e Magnetismo 600 aC os gregos já conheciam a atração elétrica (eletrização) e a magnetita. Só 2400 anos depois, Oersted (em 1820) descobriu que os fenômenos elétricos e magnéticos estão interligados: corrente elétrica produz campo magnético. No século XIX Faraday e Maxwell deram contribuições extraordinárias para esse campo do conhecimento. Faraday mostrou que o reverso também acontecia: da mesma forma que eletricidade gera magnetismo, magnetismo pode gerar eletrecidade. Suas descobertas e as de outros pesquisadores culminaram com a formulação da teoria eletromagnética (por Maxwell), que unificou a descrição dos fenômenos elétricos, magnéticos e ópticos. Maxwell conseguiu sintetizar matematicamente a descrição de todos os fenômenos elétricos e magnéticos conhecidos com quatro equações interligadas (as famosas quatro equações de Maxwell) e provou que a luz é uma onda eletromagnética. O impacto na sociedade foi imenso: a luz elétrica, os motores elétricos, as transmissão de voz (rádio, telefonia), depois imagem (televisão), a descoberta do laser, das fibras ópticas, a capacidade de transmitir informação em enorme quantidades e com altíssima velocidade (dados, som e imagem), o controle do transporte de carga elétrica permitiu o desenvolvimento de aparelhos eletrônicos, etc ... Um dos objetivos desse curso é apresentar alguns fundamentos dessa teoria a voces. Vamos começar com as primeiras experiências: vidro atritado com seda plástico atritado com pele de coelho vidro com seda plástico com pele REPELE REPELE ATRAI 1. Atrita-se dois bastões de vidro com seda, sendo que um deles está pendurado em uma linha de naylon. Ao aproximar os dois bastões, observamos que eles se repelem. 2. Atrita-se dois batões de plástico com pele animal (pele de coelho por exemplo), sendo que um deles está pendurado em uma linha de naylon. Ao aproximar os dois bastões, observamos que eles também se repelem. 3. Entretanto, ao aproximar o bastão de vidro atritado com seda do bastão de plástico atritado com pele, ou vice-versa, observamos que eles se atraem. Construção lógica: 1. A esfregação transfere algo entre o bastão e o esfregão. 2. Existem dois tipos desse algo. 3. Algo do mesmo tipo se replem, de tipos diferentes se atraem. Chamamos esse algo transferido de carga elétrica. Há dois tipos de carga elétrica: chamamos de carga positiva e carga negativa. Cargas de mesmo sinal se repelem, e cargas de sinais opostos se atraem. No caso relatado, o vidro (+) a seda (-); o plastico (-) e a pele animal (+) Fenômenos eletrostáticos (cargas em repouso) são frequentes, principalmente em regiões de clima seco, por exemplo os choques (descargas elétricas) em maçanetas. Os raios são os mais exuberantes (Franklin mostrou que decorrem de transferência de cargas elétricas entre a nuvem carregada e o para-raios), tal e qual as faíscas na maçaneta, só que em escala muito maior. 4. Cargas elétricas fluem com facilidades distintas através de diferents materiais. Se elas fluem com facilidade o material é classificado como condutor de eletrecidade; se elas não fluem, ou o fazem com extrema dificuldade, o material é classificado como isolante. Entre esses dois extremos encontram-se os materiais semicondutores. Neles, em certas condições as cargas fluem e outras não (depende da temperatura, da intensidade do estímulo elétrico feito para elas fluirem, entre outros fatores) • O Cu, Au e Ag são excelentes condutores. • A borracha, plasticos em geral, são isolantes • GaAs, Si, GaAsxAl1-x são semicondutores 5. Cargas são quantizadas: experiência de Millikan e=1.602176487(40)×10−19 C 6. Coulomb (C) é a unidade de carga: dq = idt 1 C = quantidade de carga que passa através de uma seção reta de um condutor quando nele flui uma corrente de 1A An electrostatics puzzler http://serc.carleton.edu/sp/compadre/demonstrations/examples/48756.html nçana 1, 08292 Esparreguera, Barcelona, Spain; acort Demonstrations of Coulombʼs Law with an Electronic Balance Adolf Cortel, IES El Cairat, Gorgonçana 1, 08292 Esparreguera, Barcelona, Spain; [email protected] Referência: Physics Teacher Vol. 37, Oct. 1999 Fig. 1. Setup for measuring force of repulsion, using electronic balance and two charged balls. able to ly.6 So tabulat against balls. F the bala fit of th ments t gives v -2.0, Coulom It is plete th the cha balls, Coulom cal cha ment c nC and N o t e strations of Coulomb’s Law Electronic Balance ES El Cairat, Gorgonçana 1, 08292 Esparreguera, Barcelona, Spain; [email protected] Q Q Q/2 Q Q/2 measurement of able to take the measurements quicks force is done by ly.6 So move the upper ball gradually, 1,2 orsion balance. tabulating the reading of the balance ssible to use an elecagainst the distance between the m m/2 to measure weak balls. Figure 2 plots the readings of ler and straightforthe balance at different distances. The he demonstrations fit of the values from several experiFig. 3. Touching upper ball with an equal and discharged ball demonstrates use a very simple ments to a function of the type F! db that force of repulsion is directly proportional to the charge. Fig. 4. Linear correlation between reading of balance and charge of the repulsion force gives values of b between -1.8 and uppper ball. ctric charges. With -2.0, in good agreement with References To show that a charged body 7 5. We use a plate of PVC that is ents can prove• that Coulomb’s law. 1. E. M. Rogers, Physics for the attracts a neutral one. First, charge ctly proportional to It isMind interesting and easy to com- rubbed with a sweater, and a Inquiring (Princeton, disk about 10 cm in diameter the ball on the plate of the balance. versely proportional the1960), demonstration New plete Jersey, pp. 541-by measuring that has an insulated plastic Q/2 the distance. Bring As a another discharged ball over 542. the charge and the potential of the handle. If the charged balls are the allows for demon-first to a distance of about 1 cm. assumingPhysics the validity of brought into contact, their elec2. H. balls, F. Meiners, henomenon of The elec-balance will show an attraction Coulomb’s law. We found the electri- trical charge will be the same. Demonstration Experiments force (negative reading). Now touch n. cal charge of the balls Fig. 1. Setup for measuring force of repulsion,(Ronald Press, New York,in the experi6. To minimize discharge of the the top of the upper ball with one finusing electronic balance and two charged balls. 1970),ment Vol. corresponding 2, Chap. 29. to Fig. 2 to be 76 balls, it is advisable to clean the ger; the attraction force increases. nC and their potentialon 23 kV. 3. A. Cortel, “Demonstrations Plexiglas handles with alcohol. Figure 5 shows the interpretation Christmas-tree balls, paramagnetism with an elecWe have observed that the main Demonstrations cm in diameterof these electrostatic induction To showJ.that theEduc. electric force is cause of the loss of charge is tronic• balance,” Chem. observations. • To show that the electrical force is 75, 61-63 directly proportional to the charge. due to the point effect of small (1998). ™ tubes (30 cm in These inversely demonstrations using an proportional to the square Charge thea balls and move them to a hairs or threads adhering to the in diameter) 4. A balance with sensitivity of emonstrates electronic of balance are lessCharge complicatthe distance. the balls with 0.01 distance of about 9 cm (15 cm balls, and so we prefer to use a Fig. 4. Linear correlation between reading of balance and charge of g is a standard piece of lance with a sensi5 Because ed than measuring the angle between an electrophorus. the balls between centers). Write down the sweater rather than fur to rub equipment that is easy to move ball. g or better4 uppper two balls hung by threads and make it is advis- and reading the electrophorus. Obviously, ces discharge, though slowly, on the balance. Now touch 5. We use a plate of PVC that is level, and can measure ts, Rogers, hot glue, -3 doing the demonstrations on unnecessary to purchase specialized the upper ball with a disM. Physics for the with a sensitivity of 10 rubbed with a sweater, andforces a (and expensive) equipment. uiring Mind (Princeton, charged thirdareball (Fig. 3). wet days is to be avoided. N. Less sensitive balances disk about 10 cm in diameter w Jersey, 1960), pp. 541not suitable. Half of its electrical charge 7. If the distance between the that has an insulated plastic . handle. If the charged balls are will be removed from the balls is less than 8 cm, the valF. Meiners, Physics brought into contact, their eleco attach one ball; write down the new ues do not fit well to a function 2 monstration trical charge will be the same. ubes to each Experiments reading on the balance. of F ! 1/d . The charge distribnald Press, New York, 6. To minimize discharge of the ball with its Repeat this operation several ution will not be spherical 0), Vol. 2, Chap. 29. balls, it is advisable to clean the ally on the times, each time draining half because of the repulsion Cortel, “Demonstrations on between the charges. Plexiglas handles with alcohol. ce, held by a of the remaining charge. A amagnetism with an elecWe have observed that the main nic balance,” the tare.J. Chem. Educ. plot of the readings on the cause of the loss of charge is stand, a nut, balance versus the charge 61-63 (1998). due Q to the point effect of small Q Q Q ange another will be a straight line (Fig. 4), hairs or threads adhering to the alance with a sensitivity of corresponding to a force balls, and so we prefer to use a 1meters g is a over standard piece of sweater rather than fur to rub h its handle directly proportional to the ipment that is easy to move the electrophorus. Obviously, level, ruler, and can measure ertical charge. doing the demonstrations on es with a sensitivity of 10-3 sed to meaFig. 2. Plot of sample readings electronic vs distance between wetof days is to balance be avoided. Less sensitive between the balances balls. are suitable. -0.98 g 7. If the distance between the balls is less than 8 cm, the values do not fit well to a function ulomb’s Law with an Electronic Balance Vol. 37, Oct. 1999 THE PHYSICS TEACHER of F ! 1/d2. The charge distribution will not be spherical Fig. 5. Electrostatic induction. Neutral conducting is “polarized” and attracted when put over a because of the ball repulsion charged ball. between the charges. 0.00 g Q 448 THE PHYSICS TEACHER -0.34 g Vol. 37, Oct. 1999 447 Demonstrations of Coulomb’s Law with an Electronic Balance two balls hung by threads and make it unnecessary to purchase specialized Indução elétrica (and expensive) equipment. Q 0.00 g equipment that is easy to move and level, and can measure forces with a sensitivity of 10-3 N. Less sensitive balances are not suitable. Q Q -0.34 g sweater rather than fur to rub the electrophorus. Obviously, doing the demonstrations on wet days is to be avoided. 7. If the distance between the balls is less than 8 cm, the values do not fit well to a function of F ! 1/d2. The charge distribution will not be spherical because of the repulsion between the charges. Q -0.98 g Fig. 5. Electrostatic induction. Neutral conducting ball is “polarized” and attracted when put over a charged ball. 448 THE PHYSICS TEACHER Vol. 37, Oct. 1999 Demonstrations of Coulomb’s Law with an Electronic Balance