Física 1 – Exercícios de M.U.V. Professora: Dolores 1. (Unicamp 2014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade de 10,8 km/h e, posteriormente, andar rápido a 7,2 km/h durante dois minutos. a) Qual será a distância total percorrida pelo atleta ao terminar o treino? b) Para atingir a velocidade de 10,8 km/h, partindo do repouso, o atleta percorre 3 m com aceleração constante. Calcule o módulo da aceleração a do corredor neste trecho. 2. (Uel 2014) O desrespeito às leis de trânsito, principalmente àquelas relacionadas à velocidade permitida nas vias públicas, levou os órgãos regulamentares a utilizarem meios eletrônicos de fiscalização: os radares capazes de aferir a velocidade de um veículo e capturar sua imagem, comprovando a infração ao Código de Trânsito Brasileiro. Suponha que um motorista trafegue com seu carro à velocidade constante de 30 m/s em uma avenida cuja velocidade regulamentar seja de 60 km/h. A uma distância de 50 m, o motorista percebe a existência de um radar fotográfico e, bruscamente, inicia a frenagem com uma desaceleração de 5 m/s2. Sobre a ação do condutor, é correto afirmar que o veículo a) não terá sua imagem capturada, pois passa pelo radar com velocidade de 50 km/h. b) não terá sua imagem capturada, pois passa pelo radar com velocidade de 60 km/h. c) terá sua imagem capturada, pois passa pelo radar com velocidade de 64 km/h. d) terá sua imagem capturada, pois passa pelo radar com velocidade de 66 km/h. e) terá sua imagem capturada, pois passa pelo radar com velocidade de 72 km/h. 3. (Uel 2014) Em uma prova de atletismo, um corredor, que participa da prova de 100 m rasos, parte do repouso, corre com aceleração constante nos primeiros 50 m e depois mantém a velocidade constante até o final da prova. Sabendo que a prova foi completada em 10 s, calcule o valor da aceleração, da velocidade atingida pelo atleta no final da primeira metade da prova e dos intervalos de tempo de cada percurso. Apresente os cálculos. 4. (Fuvest 2014) Arnaldo e Batista disputam uma corrida de longa distância. O gráfico das velocidades dos dois atletas, no primeiro minuto da corrida, é mostrado na figura. Determine: a) a aceleração aB de Batista em t = 10 s; b) as distâncias dA e dB percorridas por Arnaldo e Batista, respectivamente, até t = 50 s; c) a velocidade média v A de Arnaldo no intervalo de tempo entre 0 e 50 s. 5. (Acafe 2012) Para garantir a segurança no trânsito, deve-se reduzir a velocidade de um veículo em dias de chuva, senão vejamos: um veículo em uma pista reta, asfaltada e seca, movendo-se com velocidade de módulo 36 km h 10 m s é freado e desloca-se 5,0 m até parar. Nas mesmas circunstâncias, só que com a pista molhada sob chuva, necessita de 1,0 m a mais para parar. Considerando a mesma situação (pista seca e molhada) e agora a velocidade do veículo de módulo 108 km h 30 m s, a alternativa correta que indica a distância a mais para parar, em metros, com a pista molhada em relação a pista seca é: a) 6 b) 2 c) 1,5 d) 9 6. (Ifsp 2011) Numa determinada avenida onde a velocidade máxima permitida é de 60 km/h, um motorista dirigindo a 54 km/h vê que o semáforo, distante a 63 metros, fica amarelo e decide não parar. Sabendo-se que o sinal amarelo permanece aceso durante 3 segundos aproximadamente, esse motorista, se não quiser passar no sinal vermelho, deverá imprimir ao veículo uma aceleração mínima de ______ m/s2. O resultado é que esse motorista ______ multado, pois ______ a velocidade máxima. Assinale a alternativa que preenche as lacunas, correta e respectivamente. a) 1,4 – não será – não ultrapassará. b) 4,0 – não será – não ultrapassará. c) 10 – não será – não ultrapassará. d) 4,0 – será – ultrapassará. e) 10 – será – ultrapassará. 7. (Ufpr 2010) Em uma prova internacional de ciclismo, dois dos ciclistas, um francês e, separado por uma distância de 15 m à sua frente, um inglês, se movimentam com velocidades iguais e constantes de módulo 22 m/s. Considere agora que o representante brasileiro na prova, ao ultrapassar o ciclista francês, possui uma velocidade constante de módulo 24 m/s e inicia uma aceleração constante de módulo 0,4 m/s2, com o objetivo de ultrapassar o ciclista inglês e ganhar a prova. No instante em que ele ultrapassa o ciclista francês, faltam ainda 200 m para a linha de chegada. Com base nesses dados e admitindo que o ciclista inglês, ao ser ultrapassado pelo brasileiro, mantenha constantes as características do seu movimento, assinale a alternativa correta para o tempo gasto pelo ciclista brasileiro para ultrapassar o ciclista inglês e ganhar a corrida. a) 1 s. b) 2 s. c) 3 s. d) 4 s. e) 5 s. 8. (Unicamp 2010) A Copa do Mundo é o segundo maior evento desportivo do mundo, ficando atrás apenas dos Jogos Olímpicos. Uma das regras do futebol que gera polêmica com certa frequência é a do impedimento. Para que o atacante A não esteja em impedimento, deve haver ao menos dois jogadores adversários a sua frente, G e Z, no exato instante em que o jogador L lança a bola para A (ver figura). Considere que somente os jogadores G e Z estejam à frente de A e que somente A e Z se deslocam nas situações descritas a seguir. a) Suponha que a distância entre A e Z seja de 12 m. Se A parte do repouso em direção ao gol com aceleração de 3,0 m/s2 e Z também parte do repouso com a mesma aceleração no sentido oposto, quanto tempo o jogador L tem para lançar a bola depois da partida de A antes que A encontre Z? b) O árbitro demora 0,1 s entre o momento em que vê o lançamento de L e o momento em que determina as posições dos jogadores A e Z. Considere agora que A e Z movem-se a velocidades constantes de 6,0 m/s, como indica a figura. Qual é a distância mínima entre A e Z no momento do lançamento para que o árbitro decida de forma inequívoca que A não está impedido? Gabarito 1: a) d = 9920 m b) a = 1,5 m/s² 2: [E] 3: Construindo o gráfico da velocidade em função do tempo para os 10 segundos: v = 15 m/s a = 2,25 m/s² 4: a) aB = 0,2 m/s² 5: [D] 6: [D] 7: [E] t1 = 20/3 s b) dA = 125 m vA = 2,5 m/s t2 = 10/3 s A figura abaixo ilustra a situação descrita. (instante t = 0). 8: a) t = 2 s; b) Dmin 1,2 m.