E EA E ke q r2 módulo do campo eléctrico em toda a parte da superfície esférica A 4r 2 área da superfície esférica Substituindo na expressão do fluxo teremos q E EA ke 2 4r 2 4ke q r como ke 1 40 4q E 4ke q 40 E q 0 É um resultado que não depende de r e diz que o fluxo resultante através duma superfície esférica é proporcional à carga q no interior da superfície 1 E q 0 é uma representação matemática do fato de que: • O fluxo resultante é proporcional ao número de linhas do campo • O número de linhas do campo é proporcional à carga no interior da superfície • Toda linha do campo a partir da carga tem de atravessar a superfície Superfícies fechadas de várias formas englobando uma carga q o número de linhas do campo eléctrico através da superfície esférica S1 = ao número de linhas do campo eléctrico através das superfícies não esféricas S2 e S3. Portanto, é razoável concluir que o fluxo resultante através de qualquer superfície fechada é independente da forma dessa superfície O fluxo resultante através de qualquer superfície fechada que envolve uma carga pontual q é dado por q 0 2 Uma carga pontual localizada no exterior duma superfície fechada O número de linhas entrando na superfície é igual ao número de linhas saindo da superfície O fluxo eléctrico resultante através de uma superfície fechada que não engloba nenhuma carga é nulo No caso de haver muitas cargas pontuais dentro da superfície pode-se generalizar: A Lei de Gauss afirma que o fluxo resultante através de qualquer superfície fechada é qint E E.dA 0 onde qint representa a carga líquida no interior da superfície e E , o campo eléctrico em qualquer ponto sobre a superfície. A LEI DE GAUSS AFIRMA QUE O FLUXO ELÉCTRICO RESULTANTE ATRAVÉS DE QUALQUER SUPERFÍCIE FECHADA É IGUAL À CARGA LÍQUIDA DENTRO DA SUPERFÍCIE DIVIDIDA POR 0 Esta técnica é adequada para calcular o campo eléctrico nas situações onde o grau de simetria é elevado 3 Exemplo 1: Determinar o fluxo eléctrico através de uma superfície cilíndrica, que está num campo eléctrico uniforme E Φ E E dA E cosdA a b c Φ E E cos 180 dA EdA ER 2 Φ E E cos 90 dA 0 Φ E E cos 0 dA EdA ER 2 O fluxo através de toda a superfície é ER 2 0 ER 2 0 4 Exemplo 2: A partir da lei de Gauss, calcule o campo e1étrico devido a uma carga pontual isolada q. O campo eléctrico de uma carga pontual positiva é radial para fora por simetria e, portanto, é normal à superfície em todo ponto. E dA Consequentemente, é paralelo a em todo ponto sobre a superfície e, então E dA EdA Pela lei de Gauss q E E dA EdA 0 Por simetria, E é constante em toda parte sobre a superfície, então pode ser removido da integral. Consequentemente 2 E dA E dA E 4 r q 0 onde usamos o fato de que a área da superfície de uma esfera é eléctrico: q q E ke 2 2 4 0r r 4r 2 . Agora, obtemos o campo que é o campo eléctrico de uma carga pontual que desenvolvemos a partir da lei de Coulomb . 5 CONDUTORES EM EQUILÍBRIO ELECTROSTÁTICO Num condutor eléctrico, tal como o cobre, as cargas (electrões) que não estão presas a nenhum átomo são livres para se mover dentro do material Quando nenhum movimento de carga ocorre dentro do condutor, este está em equilíbrio electrostático e tem quatro propriedades que vamos analisar a seguir • O CAMPO ELÉCTRICO É NULO EM QUALQUER PONTO DENTRO DO CONDUTOR Considere uma placa condutora num campo eléctrico E As cargas induzidas sobre as superfícies da placa produzem um campo eléctrico E p que se opõe ao campo externo, fornecendo um campo resultante nulo dentro do condutor E Ep Se o campo eléctrico não fosse nulo cargas livres no condutor que seriam aceleradas sob acção da força eléctrica 6 • SE O CONDUTOR ISOLADO TIVER UMA CARGA LÍQUIDA, A CARGA EM EXCESSO FICA INTEIRAMENTE SOBRE SUA SUPERFÍCIE Utilizaremos a lei de Gauss para verificar a segunda propriedade do condutor em equilíbrio electrostático Desenhamos uma superfície gaussiana dentro do condutor tão próxima da superfície quanto desejarmos De acordo com a Lei de Gauss qint E E.dA 0 Como em qualquer ponto E = 0 ΦE = 0 portanto qin = 0 a carga só pode ficar na superfície do condutor 7 •O CAMPO ELÉCTRICO IMEDIATAMENTE EXTERIOR AO CONDUTOR CARREGADO É PERPENDICULAR À SUPERFÍCIE DO CONDUTOR E TEM UMA MAGNITUDE / 0, ONDE É A CARGA POR UNIDADE DE ÁREA NESSE PONTO Supomos uma superfície Gaussiana na forma de um cilindro pequeno Nenhum fluxo atravessa a face plana do cilindro dentro do condutor porque E = 0 em qualquer ponto dentro do condutor. Logo, o fluxo resultante através da superfície gaussiana é o fluxo através da face plana fora do condutor onde o campo é perpendicular à superfície. Para essa face, o fluxo é EA, onde E é o campo eléctrico na face externa do condutor e A é a área da face do cilindro Aplicando a essa superfície Lei de Gauss Assim A EA 0 E E EdA EA qint 0 A 0 0 • NUM CONDUTOR DE FORMA IRREGULAR, A CARGA POR UNIDADE DE ÁREA É MÁXIMA NOS LOCAIS ONDE É MÍNIMO O RAIO DE CURVATURA DA SUPERFÍCIE 8 A verificação dessa quarta propriedade requer conceitos que só veremos mais adiante Exemplo : Padrão do campo eléctrico de uma placa condutora carregada próxima de um cilindro condutor com carga oposta. Pequenos pedaços de fibra suspensos em óleo se alinham com as linhas do campo eléctrico. Observe que (1) as linhas do campo eléctrico são perpendiculares aos condutores. (2) não há linhas dentro do cilindro (E= 0). 9