Estimativas de fixação biológica de nitrogênio em cana-de

Propaganda
INSTITUTO AGRONÔMICO
CURSO DE PÓS-GRADUAÇÃO EM AGRICULTURA TROPICAL E
SUBTROPICAL
ESTIMATIVAS DE FIXAÇÃO BIOLÓGICA DE
NITROGÊNIO EM CANA-DE-AÇÚCAR POR δ15N
Cybeli Alves de Oliveira
Orientador: Heitor Cantarella
Dissertação submetida como requisito parcial
para obtenção do grau de Mestre em
Agricultura Tropical e Subtropical, Área de
Concentração em Gestão de Recursos
Agroambientais
Campinas, SP
Abril 2012
i
ii
iii
DEDICATÓRIA
Ao meu esposo Tiago pela paciência e companheirismo;
Aos meus pais, Silvio e Angélica, por me instruírem e incentivarem minha busca pelo
conhecimento apoiando incondicionalmente.
iv
AGRADECIMENTOS
À Deus, por seu infinito Amor e misericórdia pela minha vida;
Ao meu esposo Tiago por todo amor e incentivo;
Aos meus pais, Silvio e Angélica, e minha irmã Gabriela pelo amor e apoio
incondicional que foram fundamentais para o desenvolvimento deste trabalho;
Ao Instituto Agronômico (IAC), ao Programa de Pós-Graduação pela oportunidade de
realização do curso em Agricultura Tropical e Subtropical;
Ao Dr. Heitor Cantarella, pesquisador do IAC, pela amizade e orientação profissional;
À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pela concessão
da bolsa de estudo e reserva técnica;
A todos os professores do Programa de Pós-Graduação pelos ensinamentos passados
nas disciplinas cursadas;
Ao Pós-doutorando Zaqueu Fernando Montezano por toda ajuda e amizade;
Aos pesquisadores, funcionários e técnicos de laboratório do IAC da seção de
fertilidade do solo pela convivência e auxílio nas atividades realizadas.
Aos amigos Vitor, Simone, Johnny, Hélio, Acácio, Rosane, Aline, Thaís, Mariana,
Rimena, Geisa e Jéssica pela amizade
A todos que diretamente ou indiretamente contribuíram para realização deste trabalho.
Muito Obrigada!!!
v
SUMÁRIO
DEDICATÓRIA ........................................................................................................................ iv
AGRADECIMENTOS ............................................................................................................... v
RESUMO ................................................................................................................................viii
ABSTRACT ............................................................................................................................... x
1
INTRODUÇÃO ............................................................................................................... 1
2
REVISÃO BIBLIOGRÁFICA ........................................................................................ 2
2.1
Adubação Nitrogenada da Cana-de-açúcar ..................................................................... 2
2.1.1 Resposta da cana-de-açúcar ao nitrogênio....................................................................... 3
2.2
Fixação Biológica de Nitrogênio ..................................................................................... 5
2.3
Inoculantes ....................................................................................................................... 7
2.4
Avaliações da Contribuição da FBN ............................................................................... 8
2.4.1 Técnicas isotópicas .......................................................................................................... 9
2.4.2 Quantificação da contribuição da FBN em plantas não-leguminosas ........................... 10
3
MATERIAL E MÉTODOS ........................................................................................... 13
3.1
Descrição e Localização das Áreas Experimentais Amostradas ................................... 13
3.2
Método 1 - Determinação do δ 15N em Plantas Invasoras ............................................. 16
3.2.1 Amostragens de folha de cana ....................................................................................... 16
3.3
Método 2 - Determinação do δ
15
N pela distribuição da abundância natural de
15
N
disponível as plantas no perfil do solo...................................................................................... 17
3.3.1 Amostragem de solo ...................................................................................................... 17
3.3.2 Instalação do ensaio em casa-de-vegetação com as espécies de referência .................. 21
3.3.3 Colheita dos ensaios e análises químicas ...................................................................... 24
3.4
Quantificação da Contribuição da FBN ........................................................................ 25
3.5
Análise Estatística ......................................................................................................... 26
4
RESULTADOS E DISCUSSÃO .................................................................................. 27
4.1
Método 1 - Determinação do δ 15N nas plantas invasoras ............................................. 27
4.2
Método 2 - Determinação do δ 15N de referência de acordo com a distribuição do δ15N
disponível as plantas presente no perfil do solo ....................................................................... 28
4.2.1 Análises de N inorgânico no solo dos experimentos ..................................................... 29
vi
4.2.2 Produção de matéria seca e Acúmulo de N na parte aérea das plantas cultivadas em
vasos.... ..................................................................................................................................... 31
4.2.3 Efeito da calagem na produção de matéria seca, acúmulo de N, abundância natural de
15
N
.......................................................................................................................................39
4.2.4 Valores de δ15N em diferentes profundidades do solo .................................................. 44
4.3
Estimativa da contribuição da FBN em variedades de cana-de-açúcar com e sem
inoculação por dois métodos .................................................................................................... 49
4.4
Considerações Finais ..................................................................................................... 66
5
CONCLUSÃO ............................................................................................................... 66
6
REFERÊNCIAS BIBLIOGRÁFICAS .......................................................................... 67
7
ANEXOS ....................................................................................................................... 75
7.1
Anexo I .......................................................................................................................... 75
7.2
Anexo II ......................................................................................................................... 76
7.3
Anexo III ....................................................................................................................... 77
7.4
Anexo IV ....................................................................................................................... 78
7.5
Anexo V......................................................................................................................... 79
7.6
Anexo VI ....................................................................................................................... 80
vii
Estimativas de Fixação Biológica de Nitrogênio em cana-de-açúcar por δ15N
RESUMO
As quantidades de nitrogênio aplicadas na cana-de-açúcar geralmente são iguais ou menores
do que as exportadas ou perdidas pela queima dos resíduos, porém a cultura consegue
produzir grandes quantidades de colmos em cultivos contínuos no Brasil sem aparente
degradação da fertilidade do solo. Uma das razões para a baixa resposta à adubação
nitrogenada é a possibilidade de ocorrência de fixação biológica de nitrogênio (FBN) na
cultura. A determinação da abundância natural de
15
N (δ15N) é uma das técnicas mais
empregadas para medir a contribuição da FBN, porém diferentes metodologias existem e
precisam ser comparadas na busca de uma maior precisão dos resultados. O estudo, portanto,
visou quantificar a contribuição da FBN em cana-de-açúcar em plantas inoculadas e não
inoculadas com bactérias diazotróficas endofíticas utilizando dois métodos envolvendo a
determinação do δ15N. Para quantificar a contribuição da FBN associada à cultura, um
conjunto de experimentos de campo foi instalado nas cidades de Mogi-Mirim, Jaú, Santa
Maria da Serra, Piracicaba e Sales Oliveira, com doses contratantes de N e inoculação de
bactérias diazotróficas endofíticas em variedades de cana-de-açúcar. No primeiro método, a
estimativa da contribuição da FBN em cana-de-açúcar se dá pela diferença da abundância
natural de
15
N (δ15N) entre as folhas de cana-de-açúcar e as espécies de plantas invasoras
utilizadas como plantas de referência, crescendo juntamente com as variedades de cana-deaçúcar nas parcelas que não receberam N fertilizante. No segundo método, para a estimativa
da contribuição da FBN em cana-de-açúcar investigou-se a distribuição da abundância de 15N
do N disponível para as planta no perfil do solo nas parcelas que não receberam N fertilizante,
por meio da determinação do δ15N em plantas de referência sorgo, repolho e azevém
cultivadas em vasos contendo amostras de solo das camadas 0-10, 10-20, 20-40, 40-60 e 6080 cm. No primeiro método, coletaram-se três plantas invasoras por local, com quatro
repetições. No segundo método as plantas de sorgo, repolho e azevém foram cultivadas até
que as mesmas demostrassem sintomas de deficiência de N. As plantas de referência foram
analisadas quanto a matéria seca da parte aérea, teor de N-Total e δ15N. Observou-se que no
método que verificou a abundância no perfil do solo, o valor de N-Total diminuiu com a
profundidade enquanto que os valores de δ15N aumentaram. A estimativa da contribuição da
viii
FBN pelo método de determinação do δ15N de espécies de plantas invasoras variou de 0 a
59% do N derivado da fixação atmosférica (Ndfa), enquanto que no método que verifica a
contribuição da FBN pela distribuição da abundância de 15N no perfil do solo variou de 21 a
90% de Ndfa dependendo do local.
Palavras-chave: abundância natural de 15N, FBN, variedades de cana-de-açúcar.
ix
Estimation of Biological Nitrogen Fixation in sugar cane using δ 15N
ABSTRACT
The amounts of nitrogen applied to sugar cane are generally equal to or smaller than those
exported or lost by the burning of the plant residues, but the crop can produce large amounts
of stems in soils continuously grown with sugarcane culture in Brazil without apparent
degradation of soil fertility. One reason for the low response of sugarcane to nitrogen is the
possibility of biological nitrogen fixation (BNF). The determination of the
15
N natural
abundance (δ15N) is often used to measure the contribution of BNF, but different
methodologies exist and need to be compared in the search for greater precision. The study
therefore aimed at quantifying the contribution of BNF in sugar cane plants inoculated and
non-inoculated with endophytic diazotrophic bacteria using two methods involving the
determination of δ15N. To quantify the contribution of BNF to sugarcane, a set of field
experiments was installed in Mogi-Mirim, Jau, Itaúna, Piracicaba and Sales Oliveira, São
Paulo State, with contrasting levels of N and inoculation of diazotrophic bacteria in sugarcane
varieties. In the first method, for the estimate of the contribution of BNF in sugarcane was
done based on difference in
15
N natural abundance in the leaves of sugarcane compared to
those neighboring plants in plots that did not received N fertilizer. In the second method, for
the estimate the contribution of BNF in sugarcane investigated the change in
15
N natural
abundance of the plant-available N with depth in the soil in plots that did not received N
fertilizer, through the determination of the δ15N using sorghum cabbage and ryegrass as
reference plants grown in pots with samples of the soil layers 0-10, 10-20, 20-40, 40-60 and
60-80 cm. In the first procedure, three weeds were collected per site with four replications. In
the second procedure, sorghum, cabbage and ryegrass plants were grown until they showed
symptoms of N deficiency. The reference plants were analyzed for dry matter of shoots, totalN and δ15N. It was observed that in the method investigating the abundance of 15N in the soil
profile, the value of total-N decreased with the depth whereas the δ15N increased. The
estimation of the contribution of BNF using species of weeds as reference ranged from 0 to
44% Ndfa, whereas in the method using distribution of the 15N natural abundance in the soil
profile ranged from 31 to 78% Ndfa (Nitrogen derived from air) depending on location.
x
Keywords: BNF, 15N natural abundance, sugarcane varieties.
xi
1 INTRODUÇÃO
A cana-de-açúcar é uma Poacea (Saccarum spp.) originária do sudeste da Ásia. É
cultivada em quase todas as regiões agrícolas brasileiras, sendo o Brasil o maior produtor
mundial, com uma área plantada de mais de oito milhões de hectares e uma produtividade
média de 68 t ha-1.
O Brasil produziu na safra de 2010/2011 624 milhões de toneladas. O Estado de São
Paulo continua sendo o maior produtor com 52,2% (4.370 mil hectares) e foi o Estado que
apresentou o maior aumento em expansão da área plantada, acrescentando 265.444 hectares a
área existente.
A importância desta cultura está relacionada à sua múltipla utilização podendo ser
empregada sob a forma de forragem ou como matéria prima nas usinas; atualmente, o
principal destino é a fabricação de açúcar e álcool. O setor sucroalcooleiro é parte importante
do agronegócio brasileiro, além de ser referência para os demais países produtores de canade-açúcar.
O Brasil possui 420 usinas de açúcar e etanol. Do total, 248 são mistas, 157 produzem
apenas etanol e 15 fabricam somente açúcar. O Estado de São Paulo assume a liderança com
200 usinas.
O nitrogênio (N) é requerido em grandes quantidades para a produção de biomassa,
em média 1,4 kg de N t-1 de colmo produzido. É dentre os nutrientes minerais aplicados para a
produção de cana-de-açúcar no Brasil o mais caro, e as quantidades adubadas de Nfertilizante geralmente são iguais ou menores do que as exportadas pelos colmos ou perdidas
com a queima dos resíduos culturais. Contudo, a cultura consegue produzir grandes
quantidades de colmo em cultivos contínuos no Brasil sem aparente degradação da matéria
orgânica do solo. Esses fatos são considerados evidências indiretas de que a cana-de-açúcar
obtém parte do N necessário ao seu desenvolvimento pela fixação biológica do N2
atmosférico (FBN), devido à associação com bactérias diazotróficas. Entretanto, a atual
contribuição da FBN é controversa, havendo pouca reprodutibilidade dos resultados, embora
seja geralmente reconhecido que este processo apresenta um grande potencial para a nutrição
nitrogenada da cana-de-açúcar e para o balanço energético favorável da produção de
biocombustível.
1
Na última década, estudos com bactérias diazotróficas endofíticas têm se intensificado
graças não só à capacidade de fixar N como também às suas potencialidades como agente de
promoção de crescimento e proteção de plantas. Na cultura da cana-de-açúcar, os estudos
relacionados com seleção de genótipos da planta e de estirpes bacterianas eficientes para a
fixação biológica de N2 têm apontado para contribuição média de 30% do N requerido pela
planta.
Um dos métodos que mais se adéquam à quantificação da FBN associada à cana-deaçúcar em condições de campo envolve a técnica de abundância natural de
15
N (δ15N).
Existem metodologias distintas com vantagens e desvantagens que precisam ser comparadas
na busca de um resultado mais preciso em condições de campo. Portanto, há necessidade de
quantificar a real contribuição da FBN no campo, em diferentes tipos de solo e variedades de
cana-de-açúcar, com ou sem inoculação. Pequenos incrementos derivados da FBN, numa
cultura estratégica como a cana-de-açúcar, podem representar para o Brasil ganhos com a
economia de recursos gastos com fertilizantes provenientes de fontes não-renováveis.
Tem-se por objetivo:
Comparar dois procedimentos para determinar a contribuição da FBN em cana-deaçúcar envolvendo a técnica da abundância natural de 15N;
Quantificar a contribuição da FBN em cana-de-açúcar devido à inoculação de
bactérias diazotróficas endofíticas no campo.
O presente estudo fez parte de um Projeto Temático Fapesp nº 08/56147-1, intitulado
“Nutrição Nitrogenada de cana-de-açúcar com fertilizantes ou bactéria diazotrófica”.
2 REVISÃO BIBLIOGRÁFICA
2.1 Adubação Nitrogenada da Cana-de-açúcar
O N é um dos nutrientes absorvidos em maior quantidade pela cana-de-açúcar. É o
constituinte de proteínas e ácidos nucléicos, participa diretamente ou indiretamente de
processos bioquímicos e enzimáticos. Na deficiência deste nutriente ocorre clorose nas folhas
mais velhas e diminuição da atividade meristemática da parte aérea resultando em menores
perfilhamentos, área foliar e longevidade das folhas (MALAVOLTA et al., 1997).
Estudos indicam que do nitrogênio extraído cerca de 50% é exportado com os colmos.
2
TRIVELIN et al. (1995) mencionam que para uma produtividade de 100 t ha- de colmo a
cultura extrai cerca de 200 a 300 kg ha-1 de nitrogênio. As quantidades de N exportadas pelos
colmos são semelhantes ou até menores do que as doses aplicadas ao longo do ciclo, sem
contar as perdas de N do sistema (CANTARELLA et al, 2007).
A cana-de-açúcar é uma planta eficiente para aproveitar o N do solo, devido ao longo
ciclo e ao sistema radicular abundante. Estudos com fertilizantes marcados com
15
N
mostraram que a maior parte do N absorvido pela planta é proveniente do solo, assim a
contribuição dos fertilizantes nitrogenados em relação ao N total absorvido varia de 10% a
16% (GAVA et al., 2003; SAMPAIO et al., 1984; TRIVELIN et al, 1995). Os autores
mencionam a existência de outras fontes de N para a planta como o solo, FBN, deposição com
a água da chuva e de outras fontes; e somente de 10% a 40% corresponderia à porcentagem
do N contido nos fertilizantes aplicados e absorvido pela cultura. Logo, parte considerável do
N fertilizante é encontrada no solo, onde o nutriente é incorporado a matéria orgânica: 23% a
34% (BASANTA et al, 2002); 25% (CHAPMAN et al, 1992;1994); 36% a 37%(GAVA et al,
2002); 32% (VITTI, 2003) e 13% a 42% (VALLIS et al, 1996).
Na maioria das pesquisas, quando se mede o balanço de N com o uso de
15
N no
sistema solo-planta em cana-de-açúcar verifica-se que parte do N-fertilizante marcado não é
encontrado, e é considerado como perda do sistema solo-planta. Dentre essas perdas, as
possibilidades são por volatilização de amônia (NH3) com a aplicação superficial de uréia e
por desnitrificação, que são raramente medidas com boa precisão em condições de campo,
pois os valores são inferidos por diferença entre o N aplicado e o recuperado nas plantas e no
solo (CANTARELLA et al, 2007). Em relação à lixiviação, vários estudos apontam como
uma perda pouco relevante no Brasil, pois ocorre em menos que 5% do N aplicado
(OLIVEIRA et al, 2002; VITTI et al. 2003), com exceção de solos arenosos e/ou em cultivo
de cana-de-açúcar com sistema radicular pouco desenvolvido (CAMARGO et al, 1989). Além
disso, as doses de N usadas são geralmente pequenas e aplicadas em épocas de pouca chuva.
2.1.1
Resposta da cana-de-açúcar ao nitrogênio
Estudos realizados nas regiões brasileiras há várias décadas mostraram que a resposta
da cana-planta ao N é menor e menos freqüente que na cana-soca. (ALBUQUERQUE &
MARINHO, 1983; CANTARELLA & RAIJ, 1985; ZAMBELLO & AZEREDO, 1983). Em
3
81 ensaios realizados no Estado de São Paulo com cana-planta menos de 40% mostraram
resposta a N (CANTARELLA & RAIJ, 1985). AZEREDO et al. (1986) mostraram
percentuais menores ainda, somente 20% dos experimentos compilados mostraram resposta a
N.
Existem vários fatores para explicar as baixas respostas à N em cana-planta, como a
mineralização da matéria orgânica do solo e dos restos culturais da cultura durante o
revolvimento do solo na reforma do canavial (CANTARELLA et al., 2007). Outras
justificativas para a baixa resposta da cana-planta a N incluem maior vigor do sistema
radicular da cana-planta comparado ao da soqueira, a melhoria da fertilidade do solo
associada à calagem e à adubação feitas na reforma do canavial, a fixação biológica de N, a
menor demanda inicial por nutrientes da cana-planta, as perdas de N fertilizantes por
lixiviação e a contribuição do N estocado no tolete do colmo-semente (AZEREDO et al.,
1986; CARNEIRO et al., 1995; ORLANDO FILHO et al., 1999; URQUIAGA et al., 1992).
Entretanto, dados de ORLANDO FILHO & RODELLA (1995) mostraram que em solos de
textura leve as respostas da cana-planta podem ser altas. Outro aspecto da baixa resposta a N
da cana-planta seria a incorporação de adubos verdes ou de leguminosas para grãos cultivados
na reforma do canavial, porém o aporte de N dos resíduos de cultura depende das condições
para produção de matéria seca e para a FBN. AMBROSANO et al. (2003) obtiveram 10,2 t
ha-1 de matéria seca de parte aérea e raiz de crotalária, contendo 204 kg ha-1 de N.
No Estado de São Paulo, RAIJ et al. (1996) recomendam para cana-planta 30 kg ha-1
de N no sulco de plantio, e 30 a 60 kg ha-1 de N em cobertura, com aplicação no final do
período das águas, dependendo da meta de produção de colmos. Porém, existe incerteza na
recomendação de adubação nitrogenada devido à falta de método diagnóstico da
disponibilidade de N com base na análise de solo no Brasil (RAIJ et al., 1996). Em relação a
cana-soca, RAIJ et al. (1996) recomendam para o Estado de São Paulo em cana colhida com
queima da palha doses que variam de 60 a 120 kg ha-1 dependendo da produtividade esperada.
Contudo, a crescente adoção colheita sem queima traz implicações quanto ao manejo da
adubação com N.
Os resíduos provenientes de folhas secas e ponteiros variam de 10 a 20 t ha-1 com
relação C:N próxima a 100, e conteúdo de N entre 40 e 80 kg ha-1. A taxa de mineralização
desta palhada depositada sobre o solo com alta relação C:N é lenta: 40 a 50 % da palhada
permanece no solo após um ano (FARONI et al., 2003). Assim, o N absorvido pela cana-de4
açúcar proveniente da palhada varia de 5 a 10% do N presente nos resíduos vegetais (GAVA
et al, 2003; VITTI et al., 2003). Logo, o N da palha durante o ciclo agrícola é pouco
significativo para a nutrição direta da cana-de-açúcar em relação ao N que está disponível
após sua aplicação (VITTI et al., 2003). Entretanto, em curto prazo a alta relação C:N pode
aumentar a demanda por N-mineral e a menor evaporação de água devido a cobertura de
palha pode favorecer perdas por lixiviação e por desnitrificação (WER et al., 1998), embora
modelos de simulação sugiram que a desnitrificação possa não ser afetada devido ao aumento
da imobilização do nitrogênio pelo carbono da palha, compensando o excesso de água
(THORBURN et al, 1999). THORBURN et al (2002) presumem, em seu modelo, que a dose
de N em cana manejada sem queima deva ser 60 kg ha-1 de N superior à cana queimada para
se beneficiar da água adicional.
2.2 Fixação Biológica de Nitrogênio
Desde os primeiros trabalhos de DOBEREINER (1961) isolando bactérias fixadoras
de N2 a partir das raízes de cana-de-açúcar, algumas bactérias diazotróficas têm sido
associadas com gramíneas em geral e particularmente com a cana-de-açúcar.
Quando se aborda o processo de FBN em plantas não-leguminosas, são comuns relatos
de que o genótipo da planta exerce forte influência no processo. Diferenças de contribuição da
FBN também estão presentes quando se trata da cultura da cana-de-açúcar (REIS et al., 2000).
E uma atenção maior foi dada quando URQUIAGA et al, (1992), conduzindo experimento
utilizando o método de diluição isotópica de
15
N e balanço de N para quantificar a
contribuição da FBN em dez variedades de cana-de-açúcar, obtiveram valores superiores a
60% de N proveniente da FBN.
BODDEY et al. (2001), utilizando da técnica de abundância de
15
N, verificaram que
de 11 experimentos avaliados nove apresentaram de 25 a 60% do N assimilado pela planta
proveniente da FBN. OLIVEIRA et al. (2006), com a mesma técnica, avaliaram o efeito da
inoculação de misturas bacterianas em material micropropagado das variedades SP701143 e
SP813250 e verificaram que a fixação biológica de nitrogênio atmosférico contribuiu em
média aproximadamente 30% do N acumulado. HERRIDGE, et al (2008) mencionam que a
contribuição média brasileira de FBN em cana-de-açúcar seria de 40 kg N ha-1, calculando
uma média de 20% do N assimilado pela planta. URQUIAGA et al (2011), avaliando
5
variedades comerciais de cana-de-açúcar, observaram que as mesmas foram capazes de obter
pela FBN de 40,2 a 64,0 kg ha-1 de N.
Estudos com outros tipos de gramíneas têm sido realizados, como no caso do sorgo e
milheto (LEE et al., 1994) e arroz (WATANABE et al., 1987). MORAIS et al. (2009)
avaliaram os genótipos de capim-elefante (Cameroon, BAG 02, Gramafante, Roxo e CNPGL
F06-3) em solos de baixa fertilidade, e verificaram que a FBN foi responsável em média por
51% do N assimilado pela planta. Em outro estudo, MORAIS et al. (2011) conduziram três
experimentos a campo em solos de baixa fertilidade, dois no Rio de Janeiro e um no Espírito
Santo, com as variedades Gramafante, Cameroon, BAG 02, CNPGL F06-3, CNPGL F79-2 e
Roxo, e quatro dos genótipos avaliados obtiveram de 18 a 70% do N derivado da FBN.
Vários estudos demonstraram que a adubação da cana-de-açúcar com fertilizantes
nitrogenados pode diminuir o número de bactérias diazotróficas com capacidade de fixar o N2
(BODDEY et al, 2003; FUENTES RAMIREZ et al., 1999; KENNEDY et al., 2004; REIS et
al., 2000).
Há necessidade de maior aprofundamento em estudos que determinem a real
contribuição da FBN com o intuito de promover maior produtividade, assim como, contribuir
para a preservação do meio ambiente. Apesar da constância com que as bactérias endofíticas
são isoladas, ainda são pouco conhecidas suas potencialidades fisiológicas, que implicam
diretamente nas possíveis trocas entre esses microorganismos e plantas (MARTINS et al.,
2008).
Estudos conduzidos na Austrália e África do Sul indicam que a FBN não é uma fonte
significativa de N para a cultura (BIGGS et al., 2002; HOEFSLOOT et al., 2005;
THORBURN et al., 2003). Assim, indefinições quanto às interações entre genótipos de
plantas, interação entre os organismos fixadores de N e as condições edáficas e ambientais
tornam difícil estimar valores de fixação de N2 que ocorrem globalmente devido à grande
variação dessa fixação (HERRIDGE et al., 2008).
Na última década, além dos benefícios da FBN, estudos com bactérias diazotróficas
endofíticas têm se intensificado graças às suas potencialidades como agente de promoção de
crescimento e proteção de plantas (MARQUES JR. et al., 2008).
FREITAS (2011) avaliou 162 isolados de bactérias diazotróficas endofíticas dos
gêneros Burkholderia, Herbaspirillum e Gluconacetobacter diazotrophius presente em colmo
e raiz de quatro variedades de cana-de-açúcar (SP 81-3250, RB 5536, IAC 5000 e SP 806
3280) com e sem adubação nitrogenada e verificou que as variedades e adubação nitrogenada
não influenciaram na quantificação de bactérias diazotróficas endofíticas. Além disso, os 162
isolados mostraram potencial para a fixação biológica do nitrogênio e 94 apresentaram
produção de substâncias indólicas. Trinta e oito isolados das bactérias diazotróficas
endofíticas apresentam atividade antagonista a fungos fitopatogênicos.
2.3 Inoculantes
Inoculante refere-se aos microrganismos vivos, capazes de promover o crescimento
vegetal de forma direta ou indireta, através de diferentes mecanismos, sendo denominados
mundialmente como biofertilizantes (REIS, 2007).
Levantamento da ocorrência de bactérias diazotróficas associadas a quatro diferentes
genótipos da cana-de-açúcar (Kracatau, CB-45-3, SP70-1143 e Chunee), mostra a presença
das bactérias Azospirillum lipoferum, A. brasiliense, A. amazonense, Herbaspirillum spp. e
Acetobacter diazotrophicus nos quatro genótipos e em todas as partes amostradas (raízes,
colmo e folhas), com exceção de A. amazonense, na qual as bactérias não foram isoladas das
folhas de nenhuma das três coletas (REIS JR. et al., 2000). Segundo BODDEY (2003)
grandes e diversas populações de bactérias fixadoras de N2 estão associadas com cana-deaçúcar. Evidências mostram que várias espécies podem infectar os tecidos internos da planta.
Assim a exploração e melhoria da FBN em cana-de-açúcar estão condicionadas ao fato de que
não existe uma “candidata clara” observada como única espécie responsável pela fixação de
N2.
GOVINDARAJAN et al. (2006) observaram, em dois experimentos de campo, um
aumento na biomassa de 20% devido à inoculação de Burkhlodeia vietnamiensis. Esses
mesmo autores selecionaram uma linhagem de Klebsiella pneumoniae a qual apresentou a
maior capacidade de redução do acetileno. A inoculação somente da linhagem de K.
pneumoniae, causou um aumento na biomassa nos tratamentos com 50% da dose de N
recomendada, maior que o tratamento com 100% da dose de N, embora o mesmo resultado
não tenha sido observado quando uma mistura de linhagens foi utilizada. Ao mesmo tempo, a
biomassa da planta com inoculação de K. pneumoniae isoladamente ou com
Gluconacetobacter diazotrophicus, em uma mistura de espécies, na ausência de N, excedeu
ao tratamento controle sem inoculação, na mesma condição (GOVINDARAJAN et al., 2007).
7
Esses autores puderam demonstrar que a inoculação de uma mistura de bactérias diazotróficas
pode resultar num efeito negativo no crescimento das plantas por causa da competição entre
os microrganismos pela fonte de carbono da planta.
Nos últimos anos a Embrapa Agrobiologia vem desenvolvendo um inoculante, uma
mistura de cinco bactérias diazotróficas para a cultura da cana-de-açúcar. SCHULTZ, et al.
(2010) avaliaram a eficiência deste inoculante nas variedades RB 72454 e RB 867515 com os
tratamentos: a) pedaços de colmos originado de cana-de-açúcar micropropagada inoculada in
vitro, e re-inoculada em campo no plantio; b) cana inoculada somente in vitro; c) cana
adubada com 120 kg ha-1 de N e d) controle. Estes autores avaliaram cana planta e primeira e
segunda soca e observaram que, para a variedade RB 72454 não houve diferença significativa
nos tratamentos, enquanto que para a variedade RB 867515 somente a primeira e segunda
soqueira aumentaram o rendimento em 33,5 e 29,4 Mg ha-1, respectivamente, para os
tratamentos re-inoculados quando comparados ao controle, mas não houve aumento
significativo em relação ao tratamento com adubação de N. Do mesmo modo, PEREIRA, et
al. (2010) verificaram a eficiência agronômica da inoculação e a viabilidade operacional e
econômica para variedade SP80-3280 na segunda colheita. Os tratamentos foram duas doses
de inoculante (1,25 X 108 e 2,5 X 108 UFC mL-1) em associação com quatro doses de N (0,
50, 100 e 150 kg ha-1 de N). A aplicação de 150 kg ha-1 de N e 50 kg ha-1 + uma dose de
inoculante foram as mais econômicas, gerando uma renda de R$660,89 e R$588,56,
respectivamente. A dose de 50 kg ha-1 + uma dose de inoculante resultou em maior
produtividade do que a aplicação de 100 kg ha-1 de N sem inoculação.
Na procura de um melhor veículo para a mistura de inoculantes, SILVA et al. (2009)
avaliaram o efeito da utilização de
inoculantes compostos pela mistura de estirpes de
bactérias diazotróficas e por polímeros carboximetilcelulose e amido sobre a FBN em canade-açúcar em Argissolo distrófico de textura média. Os tratamentos com os inoculantes como
mistura de bactérias diazotróficas endofíticas e os polímeros promoveram aumento médio da
produtividade das variedades RB72454 e RB867515 de 50 e 30 Mg ha-1, respectivamente, e
aumento médio da massa da matéria seca da variedade RB867515 de 18 Mg ha1, em
comparação ao controle absoluto, aos 11 meses após a inoculação, não diferindo
significativamente do tratamento controle com nitrogênio mineral.
2.4 Avaliações da Contribuição da FBN
8
2.4.1 Técnicas isotópicas
A contribuição da FBN nas plantas não-leguminosas é comparativamente menor do
que a contribuição nas plantas leguminosas. Nestas últimas, há normalmente a presença de
estruturas morfológicas conhecidas como nódulos, que são resultantes da associação da planta
com bactérias fixadoras do N2 dos gêneros Rhizobium e Bradyrhizobium (FREIRE, 1992). A
contagem e até a coloração dessas estruturas são avaliações indiretas da infecção e atividade
do processo de FBN. As características acima são distintivas da associação das bactérias
fixadoras com as plantas não leguminosas, condicionando que os métodos de avaliação da
contribuição da FBN nestas plantas sejam mais criteriosos do que nas plantas leguminosas.
Para avaliar a contribuição da FBN em plantas cultivadas várias técnicas têm sido utilizadas,
com destaque para a redução de acetileno, diluição isotópica de 15N e abundância natural de
15
N.
A redução de acetileno, técnica não isotópica, também tem sido associada com a FBN,
contudo esta técnica apresenta algumas limitações: necessidade de utilização de partes da
planta ou a planta inteira viva e o cálculo da estimativa da fixação biológica de nitrogênio
durante o ciclo todo da cultura.
O isótopo estável do nitrogênio (15N) ocorre na natureza em concentrações mais baixas
que seu homólogo 14N. O uso dos isótopos de N é baseado no fato que a proporção 14N/15N
ocorre naturalmente numa razão quase constante de 273:1 (0,366% de átomos de
15
N).
Técnicas baseadas na mensuração das concentrações relativas desses isótopos são úteis para
avaliar vários fenômenos ligados à nutrição nitrogenada das plantas.
O método da diluição isotópica de
15
N para medição da FBN tem maior custo e
apresenta dificuldades adicionais para emprego em ensaios de campo devido à necessidade de
marcação de grande volume de solo. Este procedimento não pode ser considerado como
opção para o presente conjunto de experimentos.
Já a técnica da abundância natural para avaliação da FBN é baseada no fato que o N
no solo é enriquecido com isótopo
15
N, em relação à proporção de
15
N do ar, devido à
discriminação isotópica durante as transformações do N no solo (SHEARER & KOHL,
1992). O N presente nas plantas, absorvido do solo, tende a ter enriquecimento em
15
N
semelhante ao do solo. Porém, se o N das plantas tiver origem na FBN, o enriquecimento em
15
N será menor, pois este vem da atmosfera (BODDEY et al., 2000).
9
As técnicas isotópicas de
15
N são muito úteis para quantificar a contribuição da FBN
associadas as não-leguminosas, e englobam a contribuição da FBN no ciclo completo das
culturas. Especificamente, a técnica baseada na abundância natural de 15N é mais apropriada
para avaliações em sistemas agrícolas e, quando aplicadas adequadamente, os resultados são
mais precisos (BALDANI et al., 2009).
De acordo com SHEARER & KOHL (1986) o uso da técnica de abundância natural de
15
N não antecede da aplicação de fertilizantes marcados com
15
N, o que diminui o tempo de
trabalho devido à dificuldade de aplicação destes; não ocorre a diminuição da abundância de
15
N com o passar do tempo como ocorre com a aplicação de fertilizantes marcados com
15
N
devido à diluição com o N da abundância natural do N orgânico do solo que é mineralizado; a
técnica fornece uma estimativa da fixação de N2 por todo o ciclo da cultura e pode ser
mensuradas em tecido vegetal morto. Contudo, a maior desvantagem desta técnica é a
diferença de abundância entre plantas fixadoras de N2 e não-fixadoras que são muito
pequenas. E para tratar com esses pequenos valores convencionou a utilização das unidades
chamadas δ15N expressando em partes por mil (‰) e determinado pela equação (1), tal que a
abundância natural de 15N do ar seja igual a 0,00 ‰:
δ15N (‰) = 1000 × (% átomo15N amostra - 0,3663) / 0,3663
A técnica de abundância natural de
15
(Equação 1)
N exige equipamentos de muita sensibilidade e
tornou-se uma técnica largamente aplicada para avaliar a fixação biológica de N2 no campo
devido ao aumento da precisão dos espectrômetros de massa de fluxo continuo (BODDEY, et
al., 2001). A espectrometria de massa é utilizada em análise de isótopos estáveis e baseia-se
no princípio de separação de moléculas gasosas ionizadas de acordo com suas massas quando
essas passam por um campo magnético (BOARETTO, et al., 2004).
2.4.2 Quantificação da contribuição da FBN em plantas não-leguminosas
A abundância natural de
15
N tem sido empregada para calcular a contribuição da
fixação de N2 por associação de bactérias com arroz (WATANABE et al., 1987), cana-deaçúcar (YONEYAMA et al., 1997) e capim-elefante (MORAIS, et al., 2009; MORAIS, et al.,
2011 )
10
A estimativa da FBN é realizada pela técnica da abundância natural de
15
N (δ
15
N).
Esta técnica é baseada na diferença da abundância natural de 15N entre as plantas fixadoras e
as plantas que obtém N somente do solo, consideradas como plantas de referência.
A proporção de N nas plantas fixadoras de N2 provenientes do ar (%Ndfa) pelo
processo da FBN pode então ser calculada pela equação de SHEARER & KOHL (1986) (eq.
2).
%Ndfa = 100 ×
(δ
15
fixadora
N referência − δ 15 N cana
- de - açúcar
15
δ N referência − B
)
(Equação. 2)
Onde;
%Ndfa = porcentagem de N proveniente da FBN na planta fixadora;
δ 15N referência = Abundância natural de 15N na planta de referência;
δ 15N fixadora = Abundância natural de 15N na planta fixadora.
O valor de B é uma estimativa da abundância natural de
15
N das plantas fixadoras
quando essas crescem totalmente dependentes do processo de FBN. Existe valor B estimado
para as plantas leguminosas. No caso das gramíneas, ainda não foi possível fazer crescer uma
planta cujo fornecimento de N dependa exclusivamente da FBN, por isso, a magnitude do
valor B não é conhecida e atualmente, em vários trabalhos sobre a FBN em cana-de-açúcar,
arroz e capim-elefante, o valor de B é considerado igual a zero (BODDEY et al., 2001)
Assumir um valor zero para B pode subestimar a contribuição da FBN. A importância
do valor B é menos significativa no caso especifico desse projeto, pois a finalidade é avaliar a
contribuição da FBN entre as variedades de cana-de-açúcar crescendo em experimentos de
campo.
A planta de referência apresenta uma abundância natural de 15N muito semelhante ao
do N disponível do solo, enquanto a planta fixadora de N2 apresenta geralmente valores de
abundância de 15N muito menores. Na medida em que a FBN aumenta, o valor de δ 15N tende
a zero (Equação 3) (BALDANI et al., 2009).
(δ
%Ndfa = 100 ×
15
fixadora
N referência − δ 15 N cana
- de - açúcar
15
δ N referência
)
(Equação 3)
Logo, conhecendo-se o δ 15N acumulado pela planta teste, será possível calcular o total
de N da planta derivado do solo e da FBN; porém segundo YONEYAMA et al (1997), se as
11
plantas de referência, que no caso desse autor foram plantas invasoras, tiver valores de δ15N
menores do que da cana-de-açúcar, a %Ndfa será considerada zero.
Atualmente, existem dois métodos para avaliar o enriquecimento do δ15N no solo. O
primeiro utiliza plantas invasoras como planta de referencia. Este método foi utilizado por
YONEYAMA et al. (1997) em pesquisas sobre a FBN através da técnica do δ15N no Brasil,
Filipinas e Japão e que mostraram que a contribuição da fixação de N2 para o conteúdo total
de N nas plantas variou de zero a 72% (média de 30%) (YONEYAMA et al., 1997); no Brasil
de zero a 60% (média de 32%) (POLIDORO et al., 2001).
O segundo método avalia a distribuição da abundância natural de 15N no perfil do solo,
de acordo com LEDGARD et al., (1984), que avaliaram a variabilidade no enriquecimento de
15
N no perfil de solos de diferentes profundidades (0-5, 5-10, 10-20, 20-40, 40-50 e 50-60 cm)
verificando um aumento no δ15N com a profundidade. Segundo BODDEY et al. (2001) o 15N
enriquecido pode variar com a profundidade do solo e caso as plantas invasoras não explorem
a mesma profundidade do solo da cana-de-açúcar isso poderá refletir em diferenças no δ 15N.
Então, URQUIAGA et al. (2007) aperfeiçoaram este método coletando amostras de solo em
diferentes profundidades, cultivando três espécies de plantas não fixadoras. O δ
referencia é calculado com a média ponderada do δ
15
15
N de
N. URQUIAGA et al. (2011)
verificaram a contribuição da FBN para nove variedades de cana-de-açúcar
balanço de N e técnica de abundância natural de
15
utilizando
N em experimentos a campo em
Seropédica-RJ, e mostraram um balanço positivo de N (acima de 60 kg N ha-1.ano-1),
observaram que os valores de δ15N das amostras de folha de cana-de-açúcar foram menores
do que o das plantas de referências, e que houve uma contribuição de N derivado da FBN
variando de 29 a 68% nas variedades comerciais.
.
BAPTISTA et al. (2009) avaliaram a variação da abundância de 15N no perfil de solo e
sua influência na estimativa de FBN na cultura de cana-de-açúcar através da técnica de
abundância natural de
15
N utilizando como plantas de referência plantas invasoras coletadas
em campo e plantas não fixadoras de N2 cultivadas em vaso com solo de diferentes
profundidades. Estes autores mencionam que a contribuição da FBN em cana-de-açúcar
crescendo no campo, baseada nos valores da abundância natural de 15N de espécies de plantas
invasoras podem subestimar significativamente os valores de FBN, pois representavam a
abundância de
15
N da camada mais superficial do solo (0-10 cm) onde os valores de
abundância natural de 15N são sensivelmente menores do que as outras camadas do perfil.
12
Os métodos desenvolvidos para determinar a fixação de N2 por associação de bactérias
não foram exaustivamente testados em condições de campo. E estudos da distribuição da
abundância natural de 15N do perfil do solo são também necessários.
Há vantagens e desvantagens associadas aos diferentes procedimentos usados. A
metodologia utilizada por YONEYAMA et al. (1997) na quantificação da FBN através da
técnica isotópica da abundância natural de
15
N tem as vantagens do uso de plantas de
referência crescendo nas mesmas condições em que a cana-de-açúcar e maior rapidez na
avaliação. Porém a variação da contribuição da FBN nas plantas de referência e as diferentes
profundidades ocupadas pelo sistema radicular entre essas plantas e a cana-de-açúcar são
pontos negativos do método. Por outro lado, no procedimento aperfeiçoado por URQUIAGA
et al. (2007) há maior controle das variáveis externas que afetam o desenvolvimento vegetal;
contudo, esta não reproduz as mesmas condições ambientais de campo e demanda maior
tempo para a avaliação. Há poucos dados disponíveis utilizando está metodologia.
Ensaios instalados em cinco locais localizados no Estado de São Paulo adubados ou
não com N, cultivados com três variedades por local, inoculadas e não-inoculadas com
bactérias diazotróficas endofíticas fornecerão importantes informações sobre a nutrição
nitrogenada da cana-de-açúcar. Assim, o projeto visou quantificar a contribuição da FBN em
cana-de-açúcar comparando dois procedimentos envolvendo a determinação da abundância
natural de N (δ15N).
3 MATERIAL E MÉTODOS
3.1 Descrição e Localização das Áreas Experimentais Amostradas
Na avaliação da contribuição da FBN para a nutrição nitrogenada da cana-de-açúcar
foram utilizados dois procedimentos em cinco locais de experimentação.
Em quatro municípios do Estado de São Paulo (Jaú, Santa Maria da Serra, Piracicaba e
Sales Oliveira) foram instalados cinco experimentos (dois experimentos instalados em Sales
Oliveira I e II). O delineamento experimental foi em blocos casualizados com esquema de
parcela subdividida e quatro repetições. Estes experimentos fazem parte de uma rede de
ensaios relacionados ao projeto temático Bioen/Fapesp nº 08/56147-1. Estão sendo testadas
13
variedades de cana-de-açúcar (parcela) (Tabela 1) e tratamentos com N (subparcela)
envolvendo doses e inoculação de bactérias diazotróficas endofíticas. Detalhes desses
experimentos com as variedades de cana-de-açúcar testadas e a descrição dos tratamentos
constam dos anexos I, II, III, IV e V
O quinto local de amostragem localizado no município de Mogi Mirim-SP,
correspondeu a um experimento de campo que faz parte de um projeto de pesquisa da
Fundação Agrisus (PA 719/10 intitulado “Avaliação de resposta a N em cana-de-açúcar
queimada não adubada por três anos” (Tabela 1). Trata-se de um estudo adicional, não
previsto no plano inicial. Este experimento foi instalado na Fazenda Aparecida onde foram
retiradas também amostras de solo e planta para estimar a contribuição da FBN pelos dois
procedimentos aqui testados (Anexo VI).
Os
experimentos
foram
instalados
em
Jaú-SP,
latitude 22o17´47"
sul
e
longitude: 48o33´28" oeste, altitude de 522 m e precipitação pluviométrica entre 1200 a
1500mm ao ano; Santa Maria da Serra-SP, latitude 22º34'02" sul e a longitude 48º09'38"
oeste, altitude de 495 m e precipitação pluviométrica de 1467mm ao ano; Piracicaba, latitude
22º43'31" sul e longitude 47º38'57" oeste, altitude de 547 m e precipitação pluviométrica
1273mm ao ano; Sales Oliveira-SP, latitude 20º46'19" sul e longitude 47º50'17" oeste, altitude
de 730m e precipitação pluviométrica média de 1426,80 mm ao ano; Mogi Mirim-SP, latitude
22º25'55" sul e longitude 46º57'28" oeste, altitude de 590m e precipitação pluviométrica
média de 1583mm.
Os tipos de solo desses campos experimentais são os seguintes: Jaú/SP, LATOSSOLO
VERMELHO textura média; Santa Maria da Serra/SP, NEOSSOLO QUARTZARÊNICO;
Piracicaba/SP, ARGISSOLO VERMELHO AMARELO textura argilosa; Sales de
Oliveira/SP, LATOSSOLO VERMELHO textura argilosa e Mogi Mirim/SP, NITOSSOLO
VERMELHO Eutroférrico (EMBRAPA, 2006).
14
Tabela 1. Variedade de cana-de-açúcar utilizadas nos experimentos com doses de N e
inoculação de bactérias diazotróficas.
Variedade
Códigos para
Características das variedades
adaptação ambiental
Faz. Aparecida/Mogi Mirim-SP
RB 72-454
B2-D1
Rústica e estável em diferentes ambientes
Polo Centro Oeste da APTA/Jaú-SP
SP 81-3250
B2-D1
Rústica e estável em diferentes ambientes
IACSP 95-5000
A1-C2
Responsiva ao N
RB 85-5536
A1-C2
Responsiva ao N
Faz. Itaúna/Santa Maria da Serra-SP
SP 81-3250
B2-D1
Rústica e estável em diferentes ambientes
RB 93579
B2-D1
Rústica e estável em diferentes ambientes
RB 86-7515
B2-D1
Rústica e estável em diferentes ambientes
Polo Centro Sul da APTA/Piracicaba-SP
SP 81-3250
B2-D1
Rústica e estável em diferentes ambientes
IAC 87-3396
B2-D1
Rústica e estável em diferentes ambientes
CTC 14
A1-C2
Responsiva ao N
Faz. Nova Aliança/1º Experimento/Sales Oliveira-SP
SP 81-3250
B2-D1
Rústica e estável em diferentes ambientes
RB 85-5536
A1-C2
Responsiva ao N
IACSP 95-5000
A1-C2
Responsiva ao N
Faz. Nova Aliança/2º Experimento/Sales Oliveira-SP
SP 81-3250
B2-D1
Rústica e estável em diferentes ambientes
RB 86-7515
A1-C2
Rústica e estável em diferentes ambientes
IACSP 93-3046
A1-C2
Rústica e estável em diferentes ambientes
As áreas experimentais foram tratadas com herbicidas. No experimento de Piracicaba
foi utilizado a mistura de Gamit (clomazone) + Goal (oxyfluorten) aplicado em pré-plantio
incorporado (ppi); em Jaú e Itaúna foi aplicado 2,4 D em pré-plantio, em Mogi-Mirim
Hexaron (Hexazinona+Diuron) logo após a colheita, em área total.
15
3.2 Método 1 - Determinação do δ 15N em Plantas Invasoras
As amostras das plantas de referência (plantas invasoras) foram colhidas em todos os
locais de experimentação de acordo com a idade da cana-de-açúcar, entre 10 e 14 meses na
cana-planta (experimentos de Jaú, Santa Maria da Serra, Piracicaba e Sales Oliveira I e II) e
entre 8 e 10 meses na cana-soca (Mogi Mirim). A parte aérea de três espécies de plantas
invasoras foi amostrada em cada bloco, dentro das parcelas do tratamento sem aplicação de N
via fertilizante.
As plantas coletadas foram: Cyperus esculentus L., Digitaria sanguinalis (L.) Scop e
Euphorbia heterophylla L., em Mogi-Mirim; Digitaria sanguinalis (L.) Scop, Eleusine indica
(L.) Gaertn e Commelina benghalensis L., em Jaú; Digitaria sanguinalis (L.) Scop,
Chamaesyce hyssofolia (L.) Small e Cyperus esculentus L., em Santa Maria da Serra;
Digitaria sanguinalis (L.) Scop, Ipomoea triloba L. e Chamaesyce hyssofolia (L.) Small, em
Piracicaba; Chamaesyce hyssofolia (L.) Small, Conyza spp e Digitaria sanguinalis (L.) Scop,
em Sales Oliveira (experimentos I e II).
As amostras do material vegetal foram secas em estufas de circulação forçada de ar
(60ºC/ 72 horas) e posteriormente moídas em moinho tipo Wiley e passadas em peneira com
malha de 0,853 mm (20 mesh ABNT). As plantas de referência foram submetidas à análise da
concentração total de N (BATAGLIA et al, 1983). A amostra restante do material vegetal foi
moída em moinho tipo bola e passada em peneira com malha de 0,150 mm (100 mesh ABNT)
para determinação do δ 15N em espectrômetro de massa ANCA-SL (Europa Scientific, Crewe,
UK) no laboratório do Centro de Energia Nuclear na Agricultura (CENA) utilizando de 3 a 5
mg do material vegetal. Por ser a ordem de grandeza dos valores de δ15N muito pequena, os
resultados das amostras de material vegetal foram expressos em valor de átomos de
15
N em
excesso por mil (δ ‰), utilizando N2 atmosférico como o padrão (SHEARER & KOHL,
1992).
3.2.1
Amostragem de folha de cana-de-açúcar
A amostragem de folha foi realizada na fase de maior acumulo de N, entre 10 e 14
meses na cana-planta (experimentos de Sales Oliveira I e II, Jaú, Santa Maria da Serra e
Piracicaba) e entre 8 e 10 meses na cana-soca (Mogi Mirim). Foram coletadas de 20 a 30
16
folhas por parcela nos tratamentos controle com e sem inoculação (N0 e N0+I) em cada um
dos seis experimentos. A folha diagnóstica considerada foi à folha +1, primeira folha de cima
para baixo com lígula visível (RAIJ et al., 1996). Essas folhas foram cortadas em três partes, e
o terço médio sem a nervura central foi usado na análise.
As amostras foram secas em estufa com circulação forçada de ar a 65 ºC até atingirem
peso constante. Foram então moídas em moinho tipo Wiley e passadas em peneira com malha
de 0,853 mm (20 mesh ABNT). A amostra foi então analisada para determinação da
concentração total de N (BATAGLIA et al, 1983). A amostra restante do material vegetal das
folhas diagnóstica foi moída em moinho tipo bola e passadas em peneira com malha de 0,150
mm (100 mesh ABNT) para determinação do δ
15
N em espectrômetro de massa como
mencionado anteriormente.
3.3 Método 2 - Determinação do δ
15
N pela distribuição da abundância natural de 15N
disponível as plantas no perfil do solo
3.3.1
Amostragem de solo
A amostragem de solo nas parcelas do tratamento controle (sem aplicação de N via
fertilizante) em cada um dos quatro blocos foi realizada em Sales Oliveira em 27/01/2010 e
29/05/2009, no Experimento I e no Experimento II, respectivamente. Em Jaú, Santa Maria da
Serra, Piracicaba e Mogi Mirim as datas de amostragem de solo foram, na sequencia,
19/10/2010, 20/10/2010, 09/11/2010 e 30/11/2010. Assim, o procedimento segundo
LEDGARD et al. (1984) foi adotado para analisar a mudança da abundância natural
15
N
disponível para as plantas com a profundidade do solo.
Em Sales Oliveira nos dois experimentos a coleta de solo foi feita próximo as parcelas
com tratamento controle através da abertura de uma pequena trincheira de 80 cm de
profundidade no carreador, de onde se retiraram monólitos de solo com quantidade necessária
para preencher três vasos com capacidade de 1,5 dm3 de cada uma das seguintes camadas 010; 10-20; 20-40; 40-60 e 60-80 cm nos quatro bloco. Esse esquema de amostragem
pressupõe que a área experimental seja homogênea, e que a área do carreador, não adubada,
seja representativa da parcela do tratamento controle para a determinação da abundância
natural de δ 15N.
17
Nos demais locais optou-se por amostrar o solo com o auxílio de uma cavadeira nas
três entrelinhas centrais de cada parcela do tratamento controle. As camadas foram as mesmas
de 0-10, 10-20, 20-40, 40-60 e 60-80 cm de profundidade. Novamente coletou-se solo
suficiente para preencher três vasos com capacidade para 1,5 dm3 em cada uma das camadas e
em cada um dos quatro blocos.
As quantidades de solo coletado nos seis campos experimentais foram secas,
destorroadas e passadas em peneira de 2,00 mm (10 mesh ABNT) para compor a terra fina
seca ao ar (TFSA). Uma subamostra de mais ou menos 300 g de TFSA de cada profundidade,
e de cada experimento foi retirada e analisada quimicamente segundo metodologia descrita
em RAIJ et al. (2001) (Tabela 2).
18
Tabela 2 – Resultados da análise de solo para avaliação da fertilidade nos experimentos de Piracicaba, Santa Maria da Serra, Jaú, Mogi Mirim e
Sales Oliveira em diferentes profundidades (Continuação).
Experimento
Profundidade
N-NH4+ N-NO3- M.O. pH
P
K
Ca Mg H+Al S.B. C.T.C. V
S
Mogi Mirim
Mogi Mirim
Mogi Mirim
Mogi Mirim
Mogi Mirim
Jaú
Jaú
Jaú
Jaú
Jaú
Sta Maria da Serra
Sta Maria da Serra
Sta Maria da Serra
Sta Maria da Serra
Sta Maria da Serra
Piracicaba
Piracicaba
Piracicaba
Piracicaba
Piracicaba
cm
0-10
10-20
20-40
40-60
60-80
0-10
10-20
20-40
40-60
60-80
0-10
10-20
20-40
40-60
60-80
0-10
10-20
20-40
40-60
60-80
mg kg-1
8,2
9,9
6,8
7,4
5,3
3,8
6,3
2,0
5,0
1,2
2,6
10,3
2,1
7,6
4,2
5,6
6,2
11,6
3,8
9,5
6,3
2,9
4,5
3,8
3,5
3,5
4,4
1,2
4,4
1,9
8,4
18,1
10,3
13,5
6,8
13,1
7,1
11,5
7,2
6,9
g dm-3
36
32
23
22
17
21
14
18
12
11
13
13
11
10
8
27
25
23
16
13
4,7
4,9
5,2
5,3
5,6
5,0
4,4
4,6
4,0
4,0
5,0
5,0
5,2
4,7
4,2
5,7
5,7
5,2
4,5
4,5
mg dm-3 ----------------mmolc dm-3-------------57
2,7 20
4
47
28
74
35
1,2 22
6
42
29
71
5
1,0 24
5
31
30
61
2
0,2 14
3
31
17
48
3
< 0.1 10
4
25
14
39
11
1,1 20
8
20
29
50
8
1,3 13
4
22
18
40
20
1,3 17
5
22
23
46
3
0,7
7
2
28
10
38
3
1,4 16
3
31
20
51
9
0,8 13
6
15
20
35
28
1,1 19
6
15
26
41
12
1,2 15
7
13
24
37
17
0,4
8
3
18
12
30
3
0,3
5
2
18
7
25
10
3,0 42 24
25
69
94
9
2,5 40 26
22
68
91
6
2,1 31 18
31
51
82
2
0,8 18
8
42
27
69
1
1,0 19
6
38
26
64
%
37
41
49
36
35
59
44
51
26
39
58
64
64
40
26
73
75
62
38
40
mg dm-3
61
61
108
200
157
5
12
14
21
29
7
11
14
15
15
7
8
21
30
28
N-NH4+ e N-NO3- - nitrogênio inorgânico – Bremner e Keeney (1966); MO – matéria orgânica – Walkley e Black (1934); pH em CaCl2 – Schofield e Taylor (1955);
P, K, Ca e Mg – Extrator Resina – Raij e Quaggio (1983); H+Al – acidez total – estimada pelo pHSMP – Quaggio et al. (1985); SB – soma de bases – SB=K+Ca+Mg;
CTC – capacidade de troca de cátions - CTC=SB+(H+Al); V – saturação por bases – V=(SB/T)*100; S-SO42- – enxofre na forma de sulfato – Hoeft, et al. (1973). *
19
Tabela 2 - ......Continuação.
Experimento Profundidade N-NH4+ N-NO3- M.O.
Sales
Sales
Sales
Sales
Sales
OLiveira
OLiveira
OLiveira
OLiveira
OLiveira
Cm
0-10
10-20
20-40
40-60
60-80
mg kg-1
8,9
25,3
7,0
12,9
4,7
7,6
3,2
2,9
3,9
1,8
g dm-3
32
30
25
20
19
pH
P
5,2
5,2
5,2
5,6
6,0
mg dm-3
18
5
5
1
2
K
2,3
0,5
0,6
0,4
0,3
Ca
34
21
15
9
8
Mg
H+Al
mmolc dm-3
9
42
5
42
4
38
2
31
2
25
S.B. C.T.C.
46
26
19
11
10
88
69
57
42
35
V
S
%
73
75
62
38
40
mg dm-3
*
*
*
*
*
N-NH4+ e N-NO3- - nitrogênio inorgânico – Bremner e Keeney (1966); MO – matéria orgânica – Walkley e Black (1934); pH em CaCl2 – Schofield e Taylor (1955);
P, K, Ca e Mg – Extrator Resina – Raij e Quaggio (1983); H+Al – acidez total – estimada pelo pHSMP – Quaggio et al. (1985); SB – soma de bases – SB=K+Ca+Mg;
CTC – capacidade de troca de cátions - CTC=SB+(H+Al); V – saturação por bases – V=(SB/T)*100; S-SO42- – enxofre na forma de sulfato – Hoeft, et al. (1973). *
20
3.3.2
Instalação do ensaio em casa-de-vegetação com as espécies de referência
Para cada um dos experimentos de campo foi instalado um ensaio de casa-devegetação. A incubação do solo com calcário foi realizada durante 20 dias visando corrigir a
saturação de bases a 60 % (nas profundidades com V<60% segundo a Tabela 2) para cultivo
do sorgo (Sorghum bicolor), azevém (Lolium perenne) e repolho (Brassica oleracea capitata)
(Figura 1). Foram semeadas as seguintes quantidades por vaso: 14 sementes de sorgo (0,57 g
vaso-1), 24 sementes de repolho (0,12 g vaso-1) e 2,0 g vaso-1 de azevém. A adubação de
semeadura das espécies vegetais cultivadas nos vasos foi composta de 200 mg dm-3 de P, 150
mg dm-3 de K (K2SO4), 40 mg dm-3 de Ca (Ca(HPO4)), 30 mg dm-3 de Mg (MgSO4.7H2O), 70
mg dm-3 de S, 1 mg dm-3 de B(H3B03), 5 mg dm-3 de Cu (CuSO4.5H2O), 3 mg dm-3 de Mn
(MnSO4.H2O) e 2 mg dm-3 de Zn (ZnSO4.7H2O). Depois de uma semana foi retirado o
excesso de plantas por vaso. As adubações com potássio foram parceladas no plantio e aos 15
e 30 dias com K2HPO4 após a emergência das plantas (Figura 2).
Figura 1 - Incubação do solo com calcário.
21
Figura 2 - Visão Geral do experimento.
Como a correção do solo geralmente aumenta a disponibilidade de N para as plantas,
um teste adicional foi realizado para avaliar se a adição de calcário interferia na abundância
natural de
15
N do N disponível. Para tal, foi instalado um ensaio com amostras de solo sem
correção da acidez (quando a saturação por bases era menor que 40% da CTC) e nessas
mesmas amostras corrigidas com calcário até atingir a saturação de bases de 60 %. Este teste
foi realizado somente com o sorgo como planta de referência e nas amostras coletadas em
Mogi Mirim nas profundidades de 0-10 e 10-20 cm, em Jaú nas profundidades de 40-60 e 6080 cm, e em Santa Maria da Serra nas profundidades de 40-60 e 60-80 cm.
No ensaio com o solo coletado no 2º Experimento em Sales Oliveira, o período de
cultivo das espécies foi superior a 40 dias tendo as plantas apresentado forte sintoma de
deficiência de N, este experimento foi conduzido num período anterior ao início desse
trabalho. Para o solo coletado no 1º Experimento de Sales Oliveira, o ensaio foi instalado em
05/06/2011 e conduzido por um período de 40 dias, quando as plantas mostraram sintomas de
deficiência de N, e colhido em 15/08/2011. Para os ensaios conduzidos com os solos
coletados nos experimentos de Jaú, Santa Maria da Serra, Piracicaba e Mogi Mirim o período
de cultivo foi em torno de 62 dias (Figura 3 a Figura 5), correspondendo o período de
01/02/2011 a 03/04/2011.
22
Sta. Maria
Figura 3 - Cultura do repolho semeada em solo das localidades Mogi Mirim, Jaú, Santa
Maria da Serra e Piracicaba em 60-80 cm de profundidade.
Sta. Maria
Figura 4 - Cultura do azevém semeada em solo das localidades Mogi Mirim, Piracicaba,
Santa Maria da Serra e Jaú em 60-80 cm de profundidade.
Sta. Maria
Figura 5 - Cultura do Sorgo semeada em solo das localidades Mogi Mirim, Jaú, Santa Maria
da Serra e Pracicaba em 60-80 cm de profundidade. Observação: Vaso de Piracicaba com 14
dias a menos.
23
Amostras de semente das três espécies de plantas de referência cultivadas nestes
ensaios foram retiradas para análise da concentração total de nitrogênio (BATAGLIA et al,
1983). Os resultados são apresentados na Tabela 3 e mostram que as sementes de repolho
apresentaram teor maior de nitrogênio do que as demais, porém como são sementes pequenas
(peletizadas para facilitar o plantio) a quantidade acumulada de N fornecida foi a menor.
Tabela 3 - Teor de N nas sementes de sorgo, repolho e azevém.
Sementes
N-Total
g kg-1
Sorgo
Repolho
Azevém
3.3.3
17,0
51,1
15,6
N máximo adicionado
com as sementes
mg vaso-1
9,7
6,1
31,2
Colheita dos ensaios e análises químicas
A colheita dos ensaios foi realizada após as plantas apresentarem sintoma de
deficiência de N na parte aérea, mostrando que o teor de N disponível do solo em cada uma
das profundidades havia praticamente exaurido. O número de plantas por vaso foi contado e a
parte aérea cortada rente a superfície do solo. As raízes foram também separadas do solo e
coletadas.
As amostras do material vegetal das plantas foram secas em estufas de circulação
forçada de ar até atingirem peso constante (60 ºC/72 horas). As partes das plantas foram
pesadas para obter a massa seca da parte aérea (MSPA) e da raiz (MSRaiz). Posteriormente as
amostras de material vegetal foram moídas em moinho tipo Wiley e passadas em peneira com
malha de 0,853 mm (20 mesh). As amostras da parte aérea das plantas foram analisadas para
concentração total de N (Bataglia et al, 1983). A quantidade de N extraído foi calculada em
função da MSPA para o sorgo, repolho e azevém. A amostra restante do material vegetal foi
moída em moinho tipo bola e passada em peneira com malha de 0,150 mm (100 mesh) para
determinação do δ 15N em espectrômetro de massa.
24
Segundo método proposto por BREMNER & KEENEY (1966) o solo de cada vaso foi
analisado para N-NH4+ e N-NO3- no final do período de cultivo das plantas (CANTARELLA
& TRIVELIN, 2001).
3.4 Quantificação da Contribuição da FBN
Nos seis experimentos de campo estimou-se a contribuição da FBN em variedades de
cana-de-açúcar inoculadas ou não com bactérias diazotróficas endofíticas (Gluconacetobacter
diazotrophicus, Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Azospirillum
amazonense e Burkholderia tropica) utilizando dois métodos: 1) o que utiliza os valores de
δ15N das plantas invasoras como referência para estimativa da FBN (Método 1) e, 2) o que
utiliza a distribuição da abundância de 15N disponível as plantas no perfil do solo (Método 2).
No método 2 é realizado o cultivo em vaso com plantas de referência em diferentes camadas
do solo.
No método 2 que leva em consideração a distribuição da abundância natural de
15
N
disponível as plantas no perfil do solo, utilizou-se dois procedimentos para estimar o peso
relativo do δ15N nas camadas do solo, simulando as raízes que removeram todo N disponível
as plantas numa profundidade de 80 cm.
No primeiro procedimento, calculou-se uma média para o δ15N de referência levando
em consideração abundância natural 15N (δ15Np) e o N-Total acumulado (NTp) pelas plantas
de referência crescendo em cada camadas de solo (Equação 4), segundo URQUIAGA et al.
(2011)
δ15N de referência = Σ (δ15Np* NTp)/Σ(NTp)
(Equação 4)
Onde:
p indica a profundidade das camadas;
NTp, N-Total acumulado obtido pela quantidade da matéria seca multiplicada pelo
teor de N-total.
No segundo procedimento, optou-se por ponderar o valor de δ15N de cada camada em
relação à porcentagem de raiz de cana-de-açúcar presente nas diferentes camadas do perfil do
solo (0-80 cm) para determinação do δ15N de referência (Equação 5). A porcentagem do
sistema radicular em cada camada de solo foi estimada com base na média dos valores obtidos
25
nos trabalhos de OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al.
(2007) (Tabela 4).
δ15N de referência = (δ15Nrp* %R0-10)+ (δ15Nrp* %R10-20)+ (δ15Nrp* %R20-40)+ (δ15Nrp*
%R40-60)+ (δ15Nrp* %R60-80)
(Equação 5).
Onde %R indica a % do sistema radicular da cana-de-açúcar que ocupa a camada
especificada de solo. O subscrito após %R indica a profundidade considerada (Tabela 4).
Tabela 4 – Porcentagem da distribuição do sistema radicular em cada camada do solo com
base na média dos valores obtidos nos trabalhos de OTTO (2007), VASCONCELLOS et al.
(2003) e VASCONCELLOS et al. (2007)
Profundidade
Distribuição do sistema radicular
cm
%
0-10
29
10-20
24
20-40
24
40-60
13
60-80
10
A proporção de N nas plantas fixadoras de N2 provenientes do ar (%Ndfa) pelo
processo da FBN pode então ser calculada pela equação de Shearer & Kohl (1986) (Equação
6).
%Ndfa = 100 ×
(δ
15
N referência − δ 15 N cana - de - açúcar
δ 15 N referência − B
)
(Equação 6)
Onde;
%Ndfa = porcentagem de N proveniente da FBN na planta de cana-de-açúcar;
δ 15N referência = Abundância natural de 15N na planta de referência;
δ 15N cana-de açúcar = Abundância natural de 15N na planta de cana-de-açúcar.
3.5 Análise Estatística
26
Os resultados foram analisados quanto à normalidade da distribuição de freqüência
usando os testes Shapiro-Wilk e Kolmogorov-Smirnov. A análise de variância foi realizada
para testar os efeitos das variedades de cana-de-açúcar dos tratamentos (com em sem
inoculação) e da interação entre eles. Utilizou-se o pacote estatístico SAS (2004). Para o teste
de comparação de médias foi utilizado o teste Tukey ao nível de 10% de significância
somente para o efeito significativo de variedades, pois para os tratamentos e a interação
(tratamentos dentro de variedades) o teste F foi suficiente.
4 RESULTADOS E DISCUSSÃO
4.1 Método 1 - Determinação do δ 15N nas plantas invasoras
Neste método as plantas de referência são as próprias plantas invasoras coletadas nos
experimentos para estimar a abundância de 15N do N do solo disponível às plantas, já que as
mesmas encontram-se sujeitas às mesmas condições ambientais que a cana-de-açúcar. Assim,
o valor de δ15N observado em plantas que utilizam somente o N do solo pode ser usado como
referência para comparar com o δ15N da cana-de-açúcar. Por esse procedimento, também
testaram variedades de cana-de-açúcar com e sem inoculação de bactérias diazotróficas
endofíticas para verificar a contribuição das mesmas ao processo de FBN.
O teor total de N nas amostras do material vegetal das plantas invasoras foi menor no
experimento de Santa Maria da Serra (Tabela 5), por se tratar de um Neossolo quartzarênico
com teor de argila de 6,7 e 7,1% e teor de areia de 91,3 e 90,4%, nas camadas de 0-20 e 20-40
cm, respectivamente. Além disso, o teor de MO desse local variou entre as profundidades de 8
a 13 g dm-3 (Tabela 2), portanto apresenta um baixo estoque natural de N. Em termos de
média do valor de δ15N das três espécies de plantas invasoras coletadas em cada local foram
encontrados os seguintes resultados: no município de Mogi-Mirim 2,83‰, no município de
Jaú 4,56‰, no município de Santa Maria da Serra 1,74‰, no município de Piracicaba 6,47‰
e no município de Sales Oliveira, os experimentos I e II foram 1,34‰ e 1,58‰,
respectivamente (Tabela 5). Os valores médios de δ15N da cana-de-açúcar com e sem
inoculação foram: 2,6‰ em Mogi-Mirim, 4,7‰ Jaú, 1,6‰ em Santa Maria da Serra, 6,4‰
em Piracicaba e 7,6‰ e 9,7‰ em Sales Oliveira nos experimentos I e II, respectivamente.
27
Tabela 5 - Teor de N-Total e abundância natural de
(média de 4 repetições) em diferentes localidades.
Localidade
Nome Científico
15
N na parte aérea de plantas invasoras
Nome Comum
δ15N
tiririca
capim-colchão
amendoim-bravo
‰
g kg -1
(2)
12,0 3,16±0,39
2,74±0,31
21,4
2,58±0,13
21,8
capim-colchão
pé-de-galinha
trapoeraba
22,4
22,8
24,3
5,09±0,21
4,84±0,52
3,74±0,28
capim-colchão
erva de santa
Chamaesyce hyssopifolia (L.) Small luzia
tiririca
Cyperus esculentus L.
12,3
1,96±0,15
1,21±0,04
10,5
10,6
capim-colchão
corda-de-viola
erva de santa
Chamaesyce hyssopifolia (L.) Small luzia
28,7(1) 6,35±0,29
7,24±0,26
31,2
5,81±0,28
22,4(1)
0,94±0,08
Sales I
erva de santa
Chamaesyce hyssopifolia (L.) Small luzia
buva
Conyza spp
capim-colchão
Digitaria sanguinalis (L.) Scop
16,3
20,9
12,6
Sales II
erva de santa
Chamaesyce hyssopifolia (L.) Small luzia
buva
Conyza spp
capim-colchão
Digitaria sanguinalis (L.) Scop
20,7
32,3
17,2
Mogi Mirim-SP Cyperus esculentus L.
Digitaria sanguinalis (L.) Scop
Euphorbia heterophylla L.
Jaú-SP
Digitaria sanguinalis (L.) Scop
Eleusine indica (L.) Gaertn
Commelina benghalensis L.
Digitaria sanguinalis (L.) Scop
Sta Maria da
Serra-SP
Digitaria sanguinalis (L.) Scop
Piracicaba-SP Ipomoea triloba L.
(1)
N-Total
média de três repetições; (2) média±erro padrão.
4.2 Método 2 - Determinação do δ
15
2,07±0,51
1,79±0,23
1,28±0,12
0,94±0,08
1,95±0,55
1,85±0,19
N de referência de acordo com a distribuição do
δ15N disponível as plantas presente no perfil do solo
Os resultados da avaliação do N inorgânico do solo, produção de massa de matéria
seca, N total, acúmulo de N e δ
15
N nas plantas de referência em função da profundidade
foram discutidos separadamente nos subtopicos abaixo.
28
4.2.1
Análises de N inorgânico no solo dos experimentos
As plantas cultivadas nos vasos foram colhidas quando mostraram sintomas nítidos de
deficiência de N na parte aérea; além disso, as amostras de solo dos vasos foram analisadas
para N inorgânico (N-NH4+ e N-NO3-) após o cultivo das plantas (Tabela 6 e Tabela 7). Esses
dados mostram que o solo foi praticamente esgotado em sua disponibilidade de nitrogênio
após o cultivo e indicam que o objetivo de fazer com que as plantas de referência
absorvessem o N disponível no solo foi atingido.
29
Tabela 6 - Teores de N inorgânico em amostra de solo dos experimentos de Mogi-Mirim,
Jaú, Santa Maria da Serra, Piracicaba e Sales Oliveira (I e II) após cultivo em casa-devegetação com três plantas de referência.
Sorgo
Azevém
Repolho
+(1)
-(1)
+
Profundidade
N-NH4
N-NO3
N-NH4
N-NO3
N-NH4+
N-NO3cm
0-10
10-20
20-40
40-60
60-80
1,2±0,8(1)
1,2±0,9
2,5±0,8
2,6±0,8
0,0±2,5
0,0±0,3
0,0±0,5
0,0±0,3
0,0±0,9
0,0±0,4
0-10
10-20
20-40
40-60
60-80
0,0±1,3
0,1±0,5
0,0±2,8
0,0±1,8
4,4±0,2
0,0±0,6
0,0±0,7
0,0±0,4
0,0±1,6
0,5±0,2
0-10
10-20
20-40
40-60
60-80
4,7±1,0
5,3±0,4
3,1±0,6
4,6±1,3
2,4±0,8
1,0±0,2
0,8±0,4
0,5±0,2
0,9±0,2
0,4±0,3
0-10
10-20
20-40
40-60
60-80
0,0±0,7
0,0±0,8
1,4±0,6
0,0±0,4
0,0±0,4
0,0±0,4
0,7±0,3
0,0±0,2
0-10
10-20
20-40
40-60
60-80
3,2±2,7
5,8±1,0
5,0±0,8
6,8±0,9
6,8±0,5
0,0±1,5
1,6±0,2
0,9±0,2
1,9±0,4
1,9±0,4
mg kg-1
Mogi-Mirim
2,8±0,6
0,8±0,7
3,1±0,6
0,6±0,2
3,1±1,4
1,3±0,2
5,7±2,0
1,2±0,3
3,4±0,3
0,6±0,3
Jaú-SP
0,0±0,5
0,0±0,2
0,0±0,3
0,0±0,4
0,0±0,5
0,0±0,2
1,3±0,9
0,0±0,3
2,4±0,9
0,0±0,3
Santa Maria da Serra-SP
0,2±1,1
0,0±0,2
0,0±0,3
0,0±0,1
0,0±1,1
0,0±0,2
0,0±0,7
0,0±0,2
0,6±0,6
0,0±0,2
Piracicaba-SP
1,5±0,2
0,5±2,2
2,1±0,2
1,3±0,2
3,8±0,7
0,9±0,6
2,9±0,3
0,6±0,3
3,3±0,4
1,2±0,1
Sales Oliveira I
7,0±0,7
0,8±0,4
5,8±0,4
3,4±1,2
9,5±0,5
0,9±0,3
7,4±0,3
1,6±0,2
8,5±0,6
2,3±0,3
0,0±0,5
0,4±0,3
0,5±0,5
1,2±0,3
0,0±0,3
0,0±0,2
0,0±0,3
0,0±0,1
0,0±0,5
0,0±0,2
0,0±0,6
0,0±0,5
0,0±0,6
0,0±0,2
0,0±0,1
0,0±0,3
0,0±0,2
0,0±0,3
0,4±0,3
0,4±0,5
1,7±0,3
0,0±0,3
0,0±0,4
0,0±0,2
0,0±0,3
0,0±0,1
0,0±0,2
0,0±0,2
3,2±1,0
1,0±0,5
0,0±0,4
0,5±0,4
0,0±0,6
0,0±0,5
0,0±0,2
0,0±0,2
0,0±0,2
0,0±0,3
7,8±0,7
7,9±0,9
6,5±3,1
7,2±1,0
3,6±0,7
1,3±1,4
3,1±2,3
0,8±0,3
1,7±0,5
1,2±0,4
- dados não obtidos; (1) média de quatro repetições; (2) média de quatro repetições±erro padrão
30
Tabela 7 - Teor de N inorgânico em solos corrigidos e não corrigidos após cultivo em casade-vegetação com sorgo.
Sorgo
Local
Profundidade
Tratamento
N-NH4+(1)
N-NO3-(1)
cm
mg kg-1
Mogi Mirim
0-10
com calagem
1,2±0,8
0,0±0,3
0-10
sem calagem
0,0±1,0
0,0±0,5
10-20
com calagem
1,2±0,9
0,0±0,5
10-20
sem calagem
1,5±0,4
0,0±0,4
Jaú
40-60
40-60
60-80
60-80
com calagem
sem calagem
com calagem
sem calagem
0,0±1,3
3,2±0,5
4,4±0,5
4,3±1,2
0,0±0,6
0,3±0,4
0,5±0,7
0,9±0,3
Santa Maria da Serra
40-60
40-60
60-80
60-80
com calagem
sem calagem
com calagem
sem calagem
4,6±1,0
1,6±0,7
2,4±0,4
3,0±0,8
0,9±0,2
0,0±0,3
0,4±0,4
0,6±0,4
(1)
média de quatro repetições; (2) média de quatro repetições±erro padrão
4.2.2
Produção de matéria seca e acúmulo de N na parte aérea das plantas cultivadas
em vasos
Os dados de matéria seca da parte aérea (MSPA), matéria seca de raiz (MSRaiz),
matéria seca total (MST), concentração e quantidade de N acumulado foram analisados para
cada local (Tabela 8 a Tabela 13), com exceção aos experimentos de Sales Oliveira que não
foram determinados a MSRaiz por terem sido conduzidos num período anterior ao início
desse trabalho.
No solo de Santa Maria da Serra, as espécies cultivadas azevém, repolho e sorgo
apresentaram uma menor produção de matéria seca (Tabela 10), provavelmente por tratar-se
de um Neossolo quatzarênico com baixo estoque de N (Tabela 2). No solo dos experimentos
de Sales Oliveira houve uma maior produção de MSPA, principalmente o repolho em Sales
Oliveira I (Tabela 12) e o sorgo no experimento de Sales Oliveira II (Tabela 13).
Houve uma diminuição nos valores das variáveis em relação à profundidade das
camadas de solo coletada, principalmente no solo de Sales Oliveira (experimentos I e II)
(Tabela 12 e Tabela 13, respectivamente) devido à redução da quantidade de N do solo
disponível as plantas.
31
Nos experimentos de Mogi-Mirim (Tabela 8), Jaú (Tabela 9), Santa Maria da Serra
(Tabela 10) e Piracicaba (Tabela 11) a coleta de solo para a instalação do experimento em
casa-de-vegetação foi realizado quando as plantas de cana-de-açúcar estavam crescendo,
porém não se atentou para a possibilidade das áreas apresentarem efeito residual da aplicação
de herbicida. O efeito na redução da produção de matéria seca e o atraso no cultivo não
afetaram a determinação da abundância natural de
15
N do N disponível das plantas, pois as
quantidades de matéria seca obtidas com o experimento foram suficientes para realizar a
determinação do δ15N. A limitação no crescimento das plantas teste foi mais intensa na
camada 0-10 cm nas amostras de solo de Mogi Mirim cultivado com repolho (Tabela 8) e nas
amostras de Piracicaba cultivados com sorgo (Tabela 11). Nesses casos, as culturas foram
replantadas posteriormente, quando o efeito do herbicida diminuiu, contudo, não houve
produção de matéria seca suficiente para a determinação do δ15N somente nesta camada.
Nos experimentos de Mogi Mirim, Jaú, Santa Maria da Serra e Piracicaba (Tabela 8 a
Tabela 11) a produção de matéria seca das culturas azevém e do repolho foram inferiores à do
sorgo, provavelmente devido à presença de herbicida nas camadas superficiais, mostrando
uma tendência a maiores produções de matéria seca em profundidade.
32
Tabela 8 - Quantidade de matéria seca da parte aérea (MSPA), matéria seca da raiz
(MSRaiz), matéria seca total (MST), teor de N-total e N acumulado na parte aérea para as
culturas sorgo, repolho e azevém cultivadas em casa-de-vegetação em solo do experimento de
Mogi-Mirim .
Profundidade
MSPA
cm
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
(1)
1,2 AB(1)
1,7 A
1,7 A
1,2 AB
1,0 B
1,36
5,29
0,01
17,97
0-10
10-20
20-40
40-60
60-80
Média
1,5
2,4
1,7
0,9
1,6
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
2,8 B
4,8 A
4,5 A
4,0 A
2,5 A
3,73
6,31
0,01
14,39
MSRaiz
MSTotal
g vaso -1
Azevém
0,8 A
1,4 A
1,4 A
1,1 A
1,1 A
1,18
1,97
0,17
30,50
Repolho
0,5
0,8
0,6
0,3
0,6
Sorgo
1,3 BC
2,8 A
2,5 A
2,1 AB
1,3 C
1,99
6,06
0,01
20,54
2,1 A
3,1 A
3,1 A
2,3 A
2,0 A
2,53
3,15
0,05
22,24
1,9
3,2
2,3
1,2
2,2
4,2 B
7,6 A
7,0 A
6,1 A
3,8 A
5,72
6,58
0,01
16,01
N
N acumulado na
parte aérea
g kg -1
mg vaso -1
25,8 A
13,5 B
13,8 B
14,4 B
10,8 B
15,65
13,47
0,00
20,03
30,1 A
22,6 B
23,4 AB
17,6 B
10,2 C
20,8
14,8
0,00
16,53
22,5
13,6
19,6
21,3
19,3
32,4
32,3
28,8
19,4
28,2
13,6 A
4,6 B
4,2 B
4,3 B
4,4 B
6,21
12,25
0,00
36,04
35,5 A
22,1 B
19,0 B
17,2 B
10,9 C
20,94
45,80
0,00
12,96
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
- dados não obtidos.
33
Tabela 9 - Quantidade de matéria seca da parte aérea (MSPA), matéria seca da raiz
(MSRaiz), matéria seca total (MST), teor de N-total e N acumulado na parte aérea para as
culturas sorgo, repolho e azevém cultivadas em casa-de-vegetação em solo do experimento de
Jaú.
Profundidade
MSPA
cm
(1)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
1,4 BC(1)
1,8 A
1,6 AB
1,5 B
1,2 C
1,5
10,47
0,00
8,55
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
1,8 A
1,5 A
2,4 A
2,6 A
2,1 A
2,1
0,97
0,46
27,51
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
3,85 AB
4,3 AB
4,5 A
4,2 AB
3,4 B
4,0
2,39
0,11
12,54
MSRaiz
g vaso -1
Azevém
1,1 AB
1,3 B
1,2 A
1,0 BC
0,9 C
1,1
11,06
0,00
8,61
Repolho
0,1 C
0,2 BC
0,3 AB
0,4 A
0,3 AB
0,2
5,54
0,01
30,03
Sorgo
1,5 A
1,8 A
1,5 A
1,5 A
1,2 A
1,5
1,75
0,21
21,38
MSTotal
N
N acumulado
na parte aérea
g kg -1
mg vaso -1
2,5 B
3,0 A
2,7 AB
2,4 BC
2,1 C
2,6
13,73
0,00
7,36
16,5 A
15,9 A
14,5 AB
12,6 B
12,0 B
14,3
5,52
0,01
11,51
23,6 AB
28,1 A
22,7 AB
18,8 BC
14,7 C
21,6
10,48
0,00
14,66
1,9 AB
1,7 B
2,7 AB
2,9 A
2,3 AB
2,3
1,10
0,41
26,24
31,2 A
31,2 A
16,7 B
12,2 B
11,6 B
20,6
2,87
0,07
26,09
55,3 A
40,9 B
36,2 BC
31,0 CD
23,1 D
31,2
17,19
0,00
11,41
5,4 AB
6,1 A
6,0 AB
5,7 AB
4,6 B
5,6
2,64
0,09
13,26
5,7 A
5,5 A
5,4 A
5,0 AB
4,4 B
5,2
5,74
0,01
8,16
21,8 A
22,9 A
24,2 A
20,9 A
15,0 B
21,0
8,54
0,00
11,64
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
34
Tabela 10 - Quantidade de matéria seca da parte aérea (MSPA), matéria seca da raiz
(MSRaiz), matéria seca total (MST), teor de N-total e N acumulado na parte aérea para as
culturas sorgo, repolho e azevém cultivadas em casa-de-vegetação em solo do experimento de
Santa Maria da Serra.
Profundidade
MSPA
cm
(1)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
0,9 A(1)
0,7 A
0,7 A
0,7 A
0,6 A
0,7
0,67
0,63
22,50
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
0,7 C
0,7 C
1,1 B
1,5 A
1,6 A
1,1
10,55
0,00
17,90
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
1,9 A
2,4 A
2,2 A
2,1 A
2,2 A
2,2
1,42
0,29
10,75
MSRaiz
MSTotal
g vaso -1
Azevém
0,8 A
1,6 A
0,9 A
1,6 A
0,7 A
1,4 A
0,7 A
1,4 A
0,6 A
1,2 A
0,7
1,5
0,85
0,60
0,52
0,67
22,40
20,80
Repolho
0,1 B
0,8 C
0,1 B
0,9 C
0,3 A
1,3 B
0,3 A
1,8 A
0,3 A
1,9 A
0,2
1,3
2,39
13,20
0,11
0,00
36,36
16,09
Sorgo
0,82 A
2,8 A
1,0 A
3,4 A
0,9 A
3,1 A
0,9 A
3,0 A
1,0 A
3,1 A
0,9
3,1
0,79
1,21
0,55
0,36
11,98
10,59
N
N acumulado na
parte aérea
g kg -1
mg vaso -1
13,5 A
10,6 BC
8,9 C
10,3 BC
11,7 AB
11,0
6,89
0,01
12,11
11,8 A
7,6 AB
6,5 B
7,4 AB
7,4 AB
8,1
2,38
0,12
32,64
23,5 A
22,2AB
15,4 ABC
14,4 BC
9,9 C
17,1
4,87
0,01
25,21
14,9 B
14,7 B
15,4 B
20,9 A
15,1 B
16,2
4,16
0,02
15,96
5,4 A
4,7 B
4,5 B
4,6 B
4,3 B
4,7
2,09
0,15
7,50
10,3 A
11,0 A
9,6 A
9,7 A
9,3 A
10,0
1,71
0,21
11,53
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
35
Tabela 11 - Quantidade de matéria seca da parte aérea (MSPA), matéria seca da raiz
(MSRaiz), matéria seca total (MST), teor de N-total e N acumulado na parte aérea para as
culturas sorgo, repolho e azevém cultivadas em casa-de-vegetação em solo do experimento de
Piracicaba.
Profundidade
MSPA
cm
(1)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
1,7 BC(1)
2,6 A
1,9 B
1,9 B
1,4 C
1,9
3,61
0,04
14,15
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
3,6 AB
5,2 A
4,6 AB
4,0 AB
2,9 B
4,0
3,91
0,03
22,01
0-10
10-20
20-40
40-60
60-80
Média
1,9
3,3
17,1
2,3
6,2
MSRaiz
g vaso -1
Azevém
0,9 C
1,7 A
1,5 AB
1,3 B
0,9 C
1,3
11,16
0,00
14,81
Repolho
0,3 B
0,4 AB
0,6 A
0,5 A
0,3 B
0,4
7,90
0,00
22,07
Sorgo
0,5
1,1
5,4
0,7
1,9
MSTotal
N
N acumulado
na parte aérea
g kg -1
mg vaso -1
2,6 CD
4,4 A
3,4 B
3,2 BC
2,2 D
3,2
8,79
0,00
11,97
28,1 A
13,3 B
11,7 B
13,1 B
10,5 B
15,3
13,03
0,00
27,35
41,7 A
35,2 AB
22,3 C
26,1 BC
14,4 C
27,9
2,96
0,06
22,30
3,9 AB
5,6 A
5,2 A
4,5 AB
3,2 B
4,5
4,28
0,02
20,59
17,5 A
8,8 B
8,7 B
7,8 B
7,0 B
10,0
12,05
0,00
14,80
59,3 A
44,9 AB
39,1 BC
31,0 BC
20,4 C
39,0
4,14
0,02
24,90
2,5
4,4
22,6
2,9
8,1
21,5
13,3
4,6
11,5
12,7
41,7
42,8
78,5
26,2
47,3
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
- dados não obtidos
36
Tabela 12 - Quantidade de matéria seca da parte aérea (MSPA), teor de N-total e N extraído
para as culturas sorgo, repolho e azevém cultivadas em casa-de-vegetação em solo do
experimento de Sales Oliveira I.
N acumulado na
Profundidade
MSPA
N
parte aérea
cm
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
(1)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
g vaso -1
Azevém
(1)
5,6 A
4,5 B
4,1 BC
3,7 CD
3,5 D
4,3
46,6
0,0001
5,6
Repolho
8,1 A
7,0 AB
6,9 B
5,6 C
5,2 C
6,6
17,8
0,0001
8,35
Sorgo
4,8 Aa
4,3 B
4,7 AB
3,1 C
2,6 D
3,9
60,7
0,0001
6,61
g kg -1
mg vaso -1
13,3 A
11,8 B
9,9 C
9,3 C
8,9 C
10,7
24,6
0,0001
6,7
73,7 A
52,8 B
41,2 C
32,9 D
32,6 D
46,7
74,3
0,0001
8,6
10,9 A
9,5 AB
8,8 BC
8,3 BC
7,9 C
9,0
11,0
0,0005
7,9
87,5 A
66,7 B
60,4 B
46,5 C
40,9 C
60,4
32,7
0,0001
10,63
14,8 B
12,2 AB
9,8 B
14,7 A
13,6 A
13
4,9
0,0001
14,5
70,7 A
52,0 B
45,7 B
45,7 B
34,9 C
49,8
34,8
0,0001
9,0
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
37
Tabela 13 - Quantidade de matéria seca da parte aérea (MSPA), teor de N-total e N extraído
para as culturas azevém, repolho e sorgo cultivadas em casa-de-vegetação em solo do
experimento de Sales Oliveira II.
Profundidade
cm
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
0-10
out/20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
(1)
0-10
10-20
20-40
40-60
60-80
Média
F prof
Pr > F
CV (%)
MSPA
g vaso -1
Azevém
1,7 A(1)
1,4 AB
1,5 AB
1,1 AB
1,0 B
1,35
3,45
0,0735
21,8
Repolho
1,6 AB
2,0 A
2,0 A
1,5 BC
1,2 C
1,65
11,31
0,0005
11,7
Sorgo
4,5 A
4,2 A
4,3 A
2,7 A
2,3 A
3,6
10,94
0,0006
17,3
N
N acumulado na
parte aérea
g kg -1
mg vaso -1
19,5 AB
21,9 A
15,7 AB
17,8 AB
12,7 AB
17,5 B
3,29
0,0812
18,1
33,3 A
32,0 A
24,5 A
18,7 A
12,7 A
24,2
2,87
0,1063
36,2
34,4 A
25,5 AB
19,7 B
18,1 B
15,2 B
22,57
4,83
0,0149
30,7
55,2 A
49,6 AB
39,0 ABC
27,0 BC
17,8 C
37,72
6,61
0,0047
32
8,2 A
8,15 AB
5,8 B
6,2 AB
6,5 AB
6,99
3,46
0,0423
17,1
37,0 A
34,6 A
25,2 AB
16,6 B
14,8 B
25,63
10,37
0,0007
24,6
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
38
4.2.3
Efeito da calagem na produção de matéria seca, acúmulo de N, abundância
natural de 15N
Plantas de sorgo foram cultivadas em solos dos experimentos de Mogi Mirim, Jaú e
Santa Maria da Serra, com e sem correção da acidez para avaliar a influencia da calagem na
disponibilidade de N às plantas e, portanto, na medida da abundância natural de
15
N do N
disponível do solo. A correção da acidez proporcionou maior produção de matéria seca da
parte aérea (MSPA), raíz (MSR) e total (MST) para as duas profundidades em Santa Maria da
Serra. Para as produções de matéria seca nas profundidades de amostragem de solo para os
outros dois locais não houve efeito da correção da acidez, à exceção da produção de MSPA de
Mogi-Mirim e Jaú, que aumentou e diminuiu com a correção da acidez na camada de solo de
10-20 e de 60-80 cm, respectivamente (Tabela 14).
A concentração de N na parte aérea das plantas de sorgo aumentou com a correção da
acidez nas duas profundidades da camada de solo coletada para os locais Jaú e Santa Maria da
Serra. Segundo SOUZA et al. (2007) a correção da acidez estimula a atividade e a
mineralização da matéria orgânica do solo. A quantidade de N acumulado pela parte aérea
aumentou com a correção da acidez em ambas as camadas de solo em Santa Maria da Serra e
em Mogi Mirim na camada de 10-20 cm e em Jaú na camada de 40-60 cm. As exceções foram
as outras duas profundidades desses dois locais nas quais as quantidades de N extraído com a
correção da acidez não variaram (Tabela 15)
De maneira geral, as diferenças de produção de matéria seca e de conteúdo de N
acumulado nas plantas foram pequenas e um tanto variáveis: os valores de δ15N foram
maiores nos solos com acidez corrigida em Mogi-Mirim (0-10 e 10-20 cm) (Figura 6) e Jaú
(60-80 cm) (Figura 7), e menores em Jaú (40-60 cm) e em Santa Maria da Serra (40-60 e 6080 cm) (Figura 8) (Tabela 16).
O solo de Mogi-Mirim, que teve a acidez corrigida nas profundidades 0-10 cm e 10-20
cm foi o único a apresentar uma diferença de valores de FBN significativa entre as plantas
cultivadas. Assim, a adição de calcário não afetou de modo consistente os cálculos de FBN,
pois a produção de MSPA e a absorção de N nas plantas cultivadas em solos ácidos foram
adequadas para quantificar o δ15N. Além disso, as raízes de cana-de-açúcar, no campo,
exploram um solo de acidez não corrigida.
39
Tabela 14 - Quantidade de matéria seca da parte aérea (MSPA), raiz (MSRaiz) e total (MST) para a cultura de sorgo cultivada em casa-devegetação em solo dos experimentos Mogi Mirim, Jaú e Santa Maria da Serra não corrigidos e corrigidos a acidez.
Produção de Matéria Seca nos Locais e Profundidades
Variável
Calagem
Mogi Mirim
Jaú
Santa Maria da Serra
0-10 cm
10-20 cm
40-60 cm
60-80 cm
40-60 cm
60-80 cm
(1)
com
2,8 A
4,8 A
4,1 A
3,4 B
2,1 A
2,2 A
MSPA
-1
sem
2,9 A
4,3 B
4,1 A
4,1 A
1,9 B
2,0 B
(g vaso )
0,84
3,6
0,3
26,8
12,4*
143,19
F cal
17,1
5,3
5,4
8,6
6,4
3,4
CV (%)
MSRaiz
(g vaso -1)
MSTotal
(g vaso -1)
(1)
com
sem
F cal
CV (%)
1,5 A
1,3 A
com
sem
F cal
CV (%)
4,8 A
4,2 A
2,6 A
2,4 A
1,5 A
1,4 A
0,3
18,2
1,3 A
1,3 A
0,9 A
0,8 B
3,7
12,1
6,7 A
6,7 A
5,6 A
5,5 A
0,3
15,4
1,2*
9,6
4,8 A
5,4 A
3,0
5,0
1,0 A
0,9 B
3,0 A
2,7 B
3,3 A
2,9 B
4,8*
5,3
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (*Teste Tukey , P<0,1).
40
Tabela 15 - Quantidade de matéria seca da parte aérea (MSPA), teor de N-total e N extraído para a cultura de sorgo cultivada em casa-devegetação em solo dos experimentos Mogi Mirim, Jaú e Santa Maria da Serra não corrigidos e corrigidos a acidez.
Variável
(1)
Calagem
Mogi Mirim
0-10 cm
10-20 cm
(1)
4,8 A
2,8 A
2,9 A
4,3 B
0,84
3,6
0,4
0,1
17,1
5,3
Jaú
40-60 cm
4,1 A
4,1 A
0,3
0,6
5,4
60-80 cm
3,4 B
4,1 A
26,8
<0,001
8,6
Sta. Maria da Serra
40-60 cm
60-80 cm
2,1 A
2,2 A
1,9 B
2,0 B
12,4*
143,19
<0,001
<0,001
6,4
3,4
MSPA
(g vaso -1)
com
sem
F cal
Pr>F
CV (%)
N
(g kg-1)
com
sem
F cal
Pr>F
CV (%)
13,6 A
12,7 A
1,32
0,29
19,4
4,6 A
4,7 A
2,0
0,2
1,76
4,9 A
4,2 B
96,7
<0,001
3,9
4,4 A
4,1 B
250,0
<0,001
1,5
4,6 A
4,0 B
60,9*
<0,001
5,3
4,3 A
3,7 B
69,8
<0,001
4,5
N acumulado
(mg vaso-1)
com
sem
F cal
Pr>F
CV (%)
35,5 A
35,5 A
0,01
0,9
5,7
22,1 A
20,4 B
3,8
0,09
3,9
19,9 A
17,4 B
37,1
<0,001
6,7
15,0 B
16,9 A
9,5
0,004
7,5
9,7 A
7,7 B
109,3*
<0,001
6,0
9,3 A
7,5 B
1084,7
<0,001
2,4
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
41
Tabela 16 – Abundância natural de 15N (δ15N) no sorgo cultivado em casa-de-vegetação e estimativa da FBN em cana-de-açúcar dos
experimentos Mogi Mirim, Jaú e Santa Maria da Serra não corrigidos e corrigidos a acidez.
Variável
(1)
Calagem
Mogi Mirim
δ15N (‰)
com
sem
F cal
Pr > F
CV (%)
0-10 cm
4,6 A(1)
3,4 B
14,38
0,006
16,3
Ndfa (%)
com
sem
F cal
Pr > F
CV (%)
45 A
30 B
12,91
0,008
25,1
10-20 cm
5,1 A
4,8 B
341,7
<0,001
1,5
51 A
48 B
30,9
0,0008
4,8
Jaú
Abundância natural de 15N
40-60 cm
60-80 cm
6,4 B
6,5 A
7,5 A
6,3 B
48,6
1011,6
<0,001
<0,001
7,7
0,5
FBN
27 B
28 A
38 A
28 A
25,6
7,1
<0,0001
0,01
21,1
15,8
Santa Maria da Serra
40-60 cm
4,8 B
5,1 A
19,2*
<0,001
11,8
67 A
67 A
0,9
0,3
26,3
60-80 cm
3,9 B
5,3 A
327,63
<0,001
4,9
63 A
67 A
3,0
0,09
28,6
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1).
42
Figura 6 - Média de N acumulado e abundância de 15N em sorgo cultivado em casa-devegetação em duas diferentes profundidades (0-10 e 10-20 cm) em solos corrigidos e não
corrigidos com calcário do município de Mogi-Mirim. Os valores de δ15N em cana-de-açúcar
se referem à planta, não estão relacionados com a profundidade.
Figura 7 - Média de N acumulado e abundância de 15N em sorgo cultivado em casa-devegetação em duas diferentes profundidades (40-60 cm e 60-80 cm) em solos corrigidos e não
corrigidos do município de Jaú. Os valores de δ15N em cana-de-açúcar se referem à planta,
não estão relacionados com a profundidade.
43
Figura 8 - Média de N acumulado e abundância de 15N em sorgo cultivado em casa-devegetação em duas diferentes profundidades (40-60 e 60-80 cm) em solos corrigidos e não
corrigidos do município de Santa Maria da Serra. Os valores de δ15N em cana-de-açúcar se
referem à planta, não estão relacionados com a profundidade.
4.2.4 Valores de δ15N em diferentes profundidades do solo
De modo geral, as quantidades de N absorvido, uma estimativa do N disponível no
solo, diminuiram com a profundidade após o cultivo com as plantas de referência, refletindo o
decréscimo do estoque de N no solo em profundidade (Figura 9 a Figura 14). Os teores
iniciais de matéria orgânica variaram em profundidade de 36 a 17 g dm-3 em Mogi-Mirim, 21
a 11 g dm-3 em Jaú, 13 a 8 g dm-3 em Santa Maria da Serra, 27 a 13 g dm-3 em Piracicaba e 32
a 19 g dm-3 em Sales Oliveira (Tabela 2).
Os valores de δ15N aumentaram com a profundidade nos experimentos de Mogi-Mirim
(Figura 9), Jaú (Figura 10), Piracicaba (Figura 12), e Sales Oliveira I (Figura 13) e II (Figura
14), atingindo o valor máximo em torno de 40-60 cm. A exceção foi o experimento de Santa
Maria da Serra, em Neossolo quartzarênico, no qual o δ15N foi maior na camada de 0-10 cm
(Figura 11), possivelmente pelo baixo teor de matéria orgânica (Tabela 2).
Frações mais finas do solo (argila, óxidos, etc) são importantes para estabilizar a
matéria orgânica. É provável que frações mais envelhecidas e antigas do estoque de matéria
orgânica do solo estejam ligadas principalmente à fração argila. A matéria-orgânica mais
antiga tem possibilidade de passar por mais reações que provocam o fracionamento do
15
N/14N, ocorrendo o enriquecimento. Assim, o aumento dos valores de δ15N no perfil do solo,
44
possivelmente seja porque a matéria orgância é mais velha em profundidade, e em solos mais
arenosos, como no caso do experimento de Santa Maria da Serra por tratar-se de um Neossolo
quartzarênico, a matéria orgânica não seja tão antiga.
As diferenças de enriquecimento de
15
N em profundidade colocam um problema
adicional para a técnica da determinação da FBN pelo método da abundância natural de 15N,
pois as plantas indicadoras podem estar absorvendo N de diferentes profundidades e, portanto,
em diferentes marcações (BODDEY et al., 2001).
As plantas cultivadas no solo amostrado do experimento de Mogi-Mirim (Figura 9),
em Nitossolo Vermelho Eutroférrico, apresentaram na camada de 0-10 cm de profundidade
valores de δ15N de 4,56 a 7,58 ‰, enquanto na camada 60-80 cm esses variaram de 5,39 a
7,63‰.
No experimento de Jaú (Figura 10), com Latossolo Vermelho textura média, na
camada de 0-10 cm os valores de δ15N foram de 4,81‰ a 7,31‰, e na camada 60-80 cm estes
valores foram de 6,53‰ a 8,5‰.
No experimento de Piracicaba (Figura 12), com Argissolo Vermelho Amarelo textura
argilosa, a camada de 0-10 cm de profundidade os valores de δ15N foram de 7,94‰ a 9,61‰ e
na camada 60-80 cm estes valores foram de 6,89‰ a 9,2‰, respectivamente.
No experimento de Sales Oliveira, com Latossolo Vermelho textura argilosa, na
camada de 0-10 cm de profundidade os valores de δ15N foram em Sales I de 3,69‰ a 4,46‰
(Figura 13) e em Sales II de 3,33‰ a 5,27‰ (Figura 14), enquanto na camada 60-80 cm estes
valores foram de 7,42‰ a 9,79‰ (Sales I) e de 6,41‰ a 9,41‰ (Sales II).
Estes resultados concordam com os obtidos pelos autores LEDGARD et al. (1984),
BAPTISTA et al. (2009) e URQUIAGA et al. (2011) que mostraram também menores valores
nas camadas superficiais do solo. LEDGARD et al. (1984) sugere que esses menores valores
nas camadas superficiais ocorrem devido a acumulação e transformação de N orgânico. Além
disso, nas camadas superiores, há um aporte mais frequente de N de fertilizantes ou recém
fixados por meios naturais, que trazem a marcação do N do ar.
45
Figura 9 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Mogi-Mirim. Os valores de δ15N em cana-deaçúcar se referem à planta, não estão relacionados com a profundidade.
Figura 10 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Jaú. Os valores de δ15N em cana-de-açúcar se
referem à planta, não estão relacionados com a profundidade.
46
Figura 11 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Santa Maria da Serra. Os valores de δ15N em
cana-de-açúcar se referem à planta, não estão relacionados com a profundidade.
Figura 12 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Piracicaba. Os valores de δ15N em cana-deaçúcar se referem à planta, não estão relacionados com a profundidade.
47
Figura 13 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Sales Oliveira I. Os valores de δ15N em cana-deaçúcar se referem à planta, não estão relacionados com a profundidade.
Figura 14 - Média de abundância de 15N em cana-de-açúcar, N acumulado e abundância de 15N em plantas de referência azevém repolho e sorgo
cultivado em casa-de-vegetação em solo de diferentes profundidades (0-80 cm) do município de Sales Oliveira II. Os valores de δ15N em canade-açúcar se referem à planta, não estão relacionados com a profundidade.
48
4.3 Estimativa da contribuição da FBN em variedades de cana-de-açúcar com e sem
inoculação por dois métodos
As estimativas de FBN pelo método que utiliza plantas invasoras (Método 1)
apresentaram valores menores do que o método que considera a distribuição da abundância
natural de 15N disponível as plantas no perfil do solo (Método 2).
No experimento de Mogi-Mirim, a estimativa da FBN pelo método1 foi até 12%,
enquanto que pelo método 2 foi até 66% (Tabela 17). No experimento de Jaú, a estimativa da
FBN pelo método1 foi até 4%, enquanto que pelo método 2 foi até 46% (Tabela 18). No
experimento de Santa Maria da Serra, a estimativa da FBN pelo método1 foi até 59%,
enquanto que pelo método 2 foi até 90% (Tabela 20). No experimento de Piracicaba, a
estimativa da FBN pelo Método1 foi até 12%, enquanto que pelo Método 2 foi até 46%
Resultados semelhantes de estimativa de FBN foram obtidos pelos dois procedimentos
utilizados no método 2: i) ponderação do δ15N em relação ao N disponível no solo e ii)
ponderação do δ15N de cada camada em relação a média da porcentagem de raiz de cana-deaçúcar nas diferentes camadas do perfil do solo (0-80 cm) segundo os trabalhos dos autores
OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al. (2007).
No município de Mogi Mirim, a estimativa da FBN foi estatisticamente maior quando
a variedade RB 72-454 no ciclo de cana-soca foi inoculada com bactérias diazotróficas
endofíticas (Tabela 17), enquanto, que nos experimentos dos municípios de Santa Maria da
Serra (Tabela 19) e Piracicaba (Tabela 20) na variedade SP 81-3250 no ciclo de cana-planta, a
estimativa da FBN foi estatisticamente maior quando não inoculada com bactérias
diazotróficas endofíticas
A estimativa da FBN nos experimentos de Santa Maria da Serra (Tabela 19) e
Piracicaba (Tabela 20) foi estatisticamente maior quando as variedades não foram inoculadas
com bactérias diazotróficas endofíticas. E não houve efeito das variedades para estimativa
média de FBN (Tabela 17 a Tabela 20).
Nos experimentos avaliados no município de Sales Oliveira (Sales I e II), a
abundância natural de 15N do N disponível do solo sugerida pela análise das folhas de canade-açúcar foi muito maior do que a obtida pelo método que utiliza como referência as plantas
invasoras ou o método que utiliza as plantas cultivadas em vaso (Figura 13 e Figura 14),
49
conseqüentemente as variedades avaliadas neste local (Tabela 1) não apresentaram FBN. Não
está clara a razão para as diferentes marcações isotópicas do N absorvido pela cana e pelas
plantas de referência. Esses dados sugerem que as plantas de cana nos ensaios de Sales
Oliveira estão absorvendo N de diferentes frações do N do solo.
50
Tabela 17- Estimativa da proporção de N da parte aérea derivado da FBN (%Ndfa) de variedades de cana-de-açúcar com e sem inoculação de
bactérias diazotróficas endofíticas no município de Mogi-Mirim estimado pela técnica da abundância natural de 15N de amostras de folhas de
cana-de-açúcar. Estimativa realizada por dois métodos: 1) utilizando a média de três plantas invasoras e 2) considerando a abundância natural de
15
N em cada camada de solo cultivado em vasos. No método 2, as estimativas foram por dois procedimentos: i) ponderação do δ15N em relação
ao N disponível no solo e ii) ponderação do δ15N de cada camada em relação a porcentagem de raiz de cana-de-açúcar nas diferentes camadas do
perfil do solo (0-80 cm) segundo os autores OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al. (2007).
Inoculação
Variedade
sem
com
RB 72454
RB 72454
F inoculação
CV(%)
(1)
-
Invasoras
9 b(1)
12 a
0,8*
41,1
FBN em cana-de-açúcar:
Ponderação por % de raiz
Ponderação por δ15N e N acumulado
Azevém
Repolho
Sorgo
Média
Azevém
Repolho
Sorgo
Média
Ndfa (%)
62 b
57 b
60 b
63 b
56 b
59 b
66 a
61 a
63 a
66 a
60 a
63 a
9,9*
2,6
-
3,2
2,8
2,6
-
3,3
2,9
Médias na mesma coluna seguidas de mesma letra não diferem significativamente (Teste Tukey , P<0,1);
- dados não obtidos.
51
Tabela 18 - Estimativa da proporção de N da parte aérea derivado da FBN (%Ndfa) de variedades de cana-de-açúcar com e sem inoculação de
bactérias diazotróficas endofíticas no município de Jaú estimado pela técnica da abundância natural de 15N de amostras de folhas de cana-deaçúcar. Estimativa realizada por dois métodos: 1) utilizando a média de três plantas invasoras e 2) considerando a abundância natural de 15N em
cada camada de solo cultivado em vasos. No método 2, as estimativas foram por dois procedimentos: i) ponderação do δ15N em relação ao N
disponível no solo e ii) ponderação do δ15N de cada camada em relação a porcentagem de raiz de cana-de-açúcar nas diferentes camadas do perfil
do solo (0-80 cm) segundo os autores OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al. (2007).
FBN em cana-de-açúcar:
Inoculação Variedade
Invasoras
Ponderação por % de raiz
Ponderação por δ15N e N acumulado
Azevém
Repolho
Sorgo
Média
Azevém
Repolho
Sorgo
Média
Ndfa (%)
sem
IAC 5000 (1)
3 a(4)
38 a
45 a
24 a
36 a
39 a
45 a
26 a
37 a
com
IAC 5000
4a
39 a
46 a
26 a
37 a
41 a
46 a
27 a
38 a
sem
RB 5536
1a
38 a
44 a
24 a
35 a
39 a
44 a
25 a
36 a
com
RB 5536
2a
36 a
42 a
21 a
33 a
37 a
42 a
23 a
34 a
sem
SP 81-3250
1a
37 a
44 a
23 a
35 a
39 a
44 a
25 a
36 a
com
SP 81-3250
1a
36 a
43 a
21 a
33 a
37 a
42 a
23 a
34 a
média sem inoculação (2)
3A
38 A
44 A
24 A
35 A
39 A
44 A
25 A
36 A
média com inoculação
4A
37 A
44 A
23 A
34 A
38 A
43 A
24 A
35 A
média IAC 5000 (3)
4A
39 A
45 A
25 A
36 A
40 A
45 A
27 A
37 A
média RB 5536
3A
37 A
43 A
23 A
34 A
38 A
43 A
24 A
35 A
média SP81-3250
3A
37 A
43 A
22 A
34 A
38 A
43 A
24 A
35 A
F variedade
F inoculação
F var*inoc
CV(%)
(1)
-
2,0
1,2
0,9
39
0,5
0,2
0,3
13
10
25
14
12
10
23
14
Média da variedade com e sem inoculação; (2) Média das variedades com e sem inoculação; (3) Média das variedades; e (4) Médias na mesma coluna seguidas de mesma letra
não diferem significativamente (Teste Tukey , P<0,1).
52
Tabela 19 - Estimativa da proporção de N da parte aérea derivado da FBN (%Ndfa) de variedades de cana-de-açúcar com e sem inoculação de
bactérias diazotróficas endofíticas no município de Santa Maria da Serra estimado pela técnica da abundância natural de 15N de amostras de
folhas de cana-de-açúcar. Estimativa realizada por dois métodos: 1) utilizando a média de três plantas invasoras e 2) considerando a abundância
natural de 15N em cada camada de solo cultivado em vasos. No método 2, as estimativas foram por dois procedimentos: i) ponderação do δ15N
em relação ao N disponível no solo e ii) ponderação do δ15N de cada camada em relação a porcentagem de raiz de cana-de-açúcar nas diferentes
camadas do perfil do solo (0-80 cm) segundo os autores OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al. (2007).
FBN em cana-de-açúcar:
Inoculação Variedade
Invasoras
Ponderação por % de raiz
Ponderação por δ15N e N acumulado
Azevém
Repolho
Sorgo
Média
Azevém
Repolho
Sorgo
Média
Ndfa (%)
sem
RB 93579 (1)
13 a(4)
76 a
78 a
69 a
75 a
76 a
78 a
68 a
74 a
com
RB 93579
15 a
68 a
71 a
59 a
66 a
84 a
85 a
79 a
83 a
sem
RB 86-7515
24 a
84 a
86 a
79 a
83 a
88 a
89 a
85 a
87 a
com
RB 86-7515
37 a
78 a
80 a
72 a
77 a
68 a
71 a
58 a
66 a
sem
SP 81-3250
59 a
88 a
90 a
85 a
88 a
78 a
80 a
71 a
76 a
com
SP 81-3250
1b
64 b
67 b
53 b
61 b
64 b
66 b
52 b
61 b
média sem inoculação (2)
41 A
83 A
85 A
78 A
82 A
83 A
85 A
78 A
82 A
média com inoculação
10 B
70 B
73 B
62 B
68 B
70 B
72 B
60 B
68 B
média RB 93579 (3)
22 A
72 A
75 A
64 A
70 A
80 A
82 A
74 A
78 A
média 86-7515
28 A
81 A
83 A
76 A
80 A
78 A
80 A
71 A
77 A
média SP81-3250
27 A
76 A
78 A
69 A
75 A
71 A
73 A
61 A
69 A
F variedade
0,9
1,9
F inoculação
4,1*
11,5*
F var*inoc
3,9*
2,5*
CV(%)
34,3
12,1
10,6
17,0
13,1
12,0
10,9
17,9
13,4
(1)
Média da variedade com e sem inoculação; (2) Média das variedades com e sem inoculação; (3) Média das variedades; e (4) Médias na mesma coluna seguidas de mesma letra
não diferem significativamente (Teste Tukey , P<0,1).
53
Tabela 20 - Estimativa da proporção de N da parte aérea derivado da FBN (%Ndfa) de variedades de cana-de-açúcar com e sem inoculação de
bactérias diazotróficas endofíticas no município de Piracicaba estimado pela técnica da abundância natural de 15N de amostras de folhas de canade-açúcar. Estimativa realizada por dois métodos: 1) utilizando a média de três plantas invasoras e 2) considerando a abundância natural de 15N
em cada camada de solo cultivado em vasos. No método 2, as estimativas foram por dois procedimentos: i) ponderação do δ15N em relação ao N
disponível no solo e ii) ponderação do δ15N de cada camada em relação a porcentagem de raiz de cana-de-açúcar nas diferentes camadas do perfil
do solo (0-80 cm) segundo os autores OTTO (2007), VASCONCELLOS et al. (2003) e VASCONCELLOS et al. (2007).
FBN em cana-de-açúcar:
Inoculação Variedade
Invasoras
Ponderação por % de raiz
Ponderação por δ15N e N acumulado
Azevém Repolho
Sorgo
Média
Azevém
Repolho
Sorgo
Média
Ndfa (%)
sem
CTC 14 (1)
4 a (4)
30 a
36 a
33 a
30 a
36 a
33 a
com
CTC 14
8a
33 a
39 a
36 a
32 a
39 a
35 a
sem
IAC 87-3396
12 a
41 a
46 a
43 a
40 a
46 a
43 a
com
IAC 87-3396
4b
34 a
39 a
37 a
33 a
39 a
36 a
sem
SP81-3250
4a
32 a
37 a
35 a
31 a
37 a
34 a
com
SP81-3250
0b
25 a
31 a
28 a
24 a
31 a
27 a
média sem inoculação (2)
3A
34 A
40 A
37 A
34 A
40 A
37 A
média com inoculação
2B
31 B
36 B
33 B
30 B
36 B
33 B
média CTC 14 (3)
2A
32 A
37 A
35 A
31 A
37 A
34 A
média CTC 87-3396
5A
37 A
42 A
40 A
37 A
42 A
40 A
média SP81-3250
1A
28 A
34 A
31 A
28 A
34 A
31 A
F variedade
F inoculação
F var*inoc
CV(%)
(1)
-
1,3
4,1*
3,0 *
41
(2)
7,9
3,9*
3,1
14
11
-
Média da variedade com e sem inoculação; Média das variedades com e sem inoculação;
não diferem significativamente (Teste Tukey , P<0,1). - dados não obtidos.
(3)
13
Média das variedades; e
15
(4)
11
-
13
Médias na mesma coluna seguidas de mesma letra
54
O primeiro estudo a estimar a contribuição da FBN pelo método da abundância natural
de
15
N através da amostragem de folhas de cana-de-açúcar e plantas invasoras foi realizado
por YONEYAMA et al. (1997) em diferentes plantações no Brasil, Filipinas e Japão. Nesse
estudo as estimativas de FBN foram em média de 30%. No estudo de URQUIAGA et al,
(1992) a estimativa da FBN foi até 60% pelo método de diluição isotópica de 15N em dez
variedades de cana-de-açúcar. Em outro estudo, utilizando plantas invasoras e o método da
15
abundância natural de
N (BODDEY et al., 2001) em um levantamento realizado nas
principais áreas produtoras do Brasil, as estimativas de FBN variaram de 25% a 60% em 9 de
11 locais amostrados. URQUIAGA et al. (2011) avaliaram variedades de cana-de-açúcar no
ciclo de 2000-2004 através da técnica de abundância natural de
15
N por dois métodos. No
método que utiliza plantas invasoras, as estimativas da FBN nas variedades comerciais
variaram de 23% a 44%, enquanto que pelo método que considera a distribuição da
abundância natural de
15
N disponível as plantas no perfil do solo, as estimativas da FBN
variaram de 29% a 68%.
A técnica de abundância natural de 15N também foi utilizada em trabalhos com capimelefante para a estimativa da FBN. MORAIS et al. (2009) verificaram que a estimativa da
FBN nas variedades de capim-elefante variou de 21 a 52% em cinco genótipos de capimelefante durante três cortes crescendo em dois tipos de solo de
baixa fertilidade
(ARGISSOLO e PLANOSSOLO). Em outro estudo, MORAIS et al. (2011) instalaram três
experimentos em campo (dois no estado do RJ e um no ES) avaliando cinco diferentes
genótipos de capim-elefante em solos de baixa fertilidade. No primeiro experimento os
autores utilizaram o método que usa plantas invasoras como referência apenas nas duas
últimas das seis colheitas realizadas e a estimativa da FBN variou de 47% a 70%. No segundo
e terceiro experimentos, os autores utilizaram o método que usa plantas invasoras como
referências e o método que considera a distribuição da abundância natural de 15N disponível
as plantas no perfil do solo. Utilizando as plantas invasoras como referência, as estimativas de
FBN no segundo experimento foram entre 21% e 44% e no terceiro experimento de 32% a
55%, enquanto que pelo método que considera a distribuição da abundância natural de 15N
disponível às plantas no perfil do solo, as estimativas da FBN no segundo experimento foram
de 18% a 50% e no terceiro experimento de 52% a 68%.
No presente estudo, que inclui seis experimentos em campo no Estado de São Paulo,
nos municípios de Mogi-Mirim (Tabela 17), Jaú (Tabela 18), Santa Maria da Serra (Tabela
55
19) e Piracicaba (Tabela 20) a estimativa da FBN pelo método que utiliza as plantas invasoras
como referência variou de 0% a 59%, e pelo método que considera a distribuição da
abundância natural de
15
N disponível as plantas no perfil do solo variou de 21% a 90%,
dependendo do local e da variedade. Contudo, nos experimentos em Sales Oliveira não houve
contribuição da FBN pelos dois métodos.
A resposta à adubação nitrogenada da cana-de-açúcar nos vários locais ajudou em
parte explicar a FBN (Tabela 22 e Tabela 23). Em locais que não houve resposta a N (Tabela
26) tais como Jaú e Piracicaba, a estimativa da FBN utilizando o método que considera a
distribuição da abundância natural de 15N disponível as plantas no perfil do solo foi em média
36% em Jaú (Tabela 18), e 35% em Piracicaba (Tabela 20). Entretanto, nos Experimentos I e
II instalados no município de Sales Oliveira, apesar desses apresentarem resposta a N, não
houve contribuição significativa do N proveniente do ar atmosférico. Autores como BIGGS et
al. (2002) e HOEFSLOOT et al. (2005) em estudos conduzidos na Austrália e África do Sul,
indicaram que a FBN não foi uma fonte significativa de N para a cultura, assim como nos
experimentos no município de
Sales Oliveira. Sabe-se que existem alguns fatores que
influenciam a ocorrência da FBN em cana-de-açúcar: variedade de cana-de-açúcar, interação
microrganismo-planta e condições edafoclimáticas. Talvez um destes fatores esteja
influenciando negativamente o processo da FBN nos experimentos de Sales Oliveira.
Não houve diferença significativa entre as variedades avaliadas nos municípios de Jaú,
Santa Maria da Serra e Piracicaba (Tabela 18 a Tabela 20) pelo método que considera a
distribuição da abundância natural de 15N disponível as plantas no perfil do solo.
Não houve consistência entre os valores estimados de FBN pelos diferentes métodos.
Nos experimentos de Mogi-Mirim (Tabela 17), Jaú (Tabela 18), Santa Maria da Serra (Tabela
19) e Piracicaba (Tabela 20) os resultados estimados de FBN pelo método que utiliza plantas
invasoras como referências foram inferiores em relação ao método que considera a
distribuição da abundância natural de
15
N disponível às plantas no perfil do solo,
possivelmente porque as plantas invasoras não conseguiram explorar o mesmo volume de
solo apresentando marcações isotópicas menores do N absorvido do que as plantas cultivadas
em vaso e do que a cana-de-açúcar (Tabela 17 a Tabela 20). Segundo BODDEY et al. (2001)
plantas que exploram diferentes volumes de solo podem absorver N em proporções
diferentemente da cana-de-açúcar. Diferenças semelhantes entre os métodos foram
encontrados por BAPTISTA et al. (2009) que apresentaram estimativas de FBN de 3% pelo
56
método que utiliza as invasoras como referência e de 31% pelo método que utiliza o cultivo
em vaso. Esses autores mencionaram que o uso de plantas invasoras como referência pode
subestimar significativamente a FBN.
URQUIAGA et al. (2011) observaram que as raízes das plantas invasoras não
excederam 20 cm, enquanto que as de cana-de-açúcar excederam 50 cm de profundidade.
Possivelmente extraíram mais N em profundidade do que as plantas invasoras, assim o uso da
média ponderada da abundância natural de 15N no perfil do solo obtida por meio das plantas
indicadoras cultivadas em vasos pode ser mais adequado para estimar a marcação isotópica do
N absorvido pela cana-de-açúcar, uma vez que a marcação de 15N aumentou em profundidade.
Além disso, URQUIAGA et al. (2011) observaram que no ciclo de cana-planta, utilizando
plantas invasoras como referência, os valores de δ15N da cana-de-açúcar (6,4 deltas) foram
maiores do que os valores das plantas invasoras (5,7 deltas) indicando que não houve
contribuição significativa ao processo de FBN; porém, a partir das colheitas seguintes, os
valores de δ15N da cana-de-açúcar diminuíram enquanto os valores de δ15N das plantas
invasoras permaneceram praticamente constantes.
No sistema produtivo de cana-de-açúcar, a taxa de crescimento destas plantas é muito
maior do que o das plantas invasoras, havendo rapidamente o sombreamento das entrelinhas
de plantio, inibindo com isso o crescimento das invasoras, além do controle químico das
plantas invasoras com o uso de herbicida. Com isso, as plantas invasoras crescem pouco e,
portanto, provavelmente exploram um volume pequeno do solo, concentrando o sistema
radicular nas camadas superficiais do solo.
Em relação ao método que verifica a distribuição da abundância de
15
N no perfil do
solo, o cultivo em vaso com plantas de referência que consigam extrair o N disponível no solo
possivelmente dão uma melhor idéia da distribuição da abundância natural de
15
N do N
disponível a planta em cada camada do solo, entretanto exige maior tempo para condução do
experimento e a obtenção dos dados está relacionada a condições edafoclimáticas diferentes
do ambiente produtivo da cana-de-açúcar.
Algumas estimativas de FBN neste estudo, como no caso de Santa Maria da Serra
(Tabela 19), que chegaram a 90% de contribuição do N atmosférico, talvez estejam
superestimadas. Para condução do experimento em casa-de-vegetação, a amostra de solo de
cada localidade foi seca e peneirada, e este processo possivelmente proporcionou a
mineralização da matéria orgânica não-lábil aumentando a disponibilidade de N (Tabela 21),
57
que foi praticamente exaurido do solo pelas plantas de referência. Além disso, não houve
nenhum impedimento radicular o que não ocorre em campo com a cana-de-açúcar.
Não houve diferença significativa em relação à estimativa da FBN analisando os dois
procedimentos proposto no método 2: i) ponderação do δ15N em relação ao N disponível no
solo nas diferentes camadas do perfil do dolo (0-80 cm) e ii) o que pondera o valor de δ15N
de cada camada em relação a porcentagem de raiz de cana-de-açúcar nas diferentes camadas
do perfil do solo (0-80 cm) (Tabela 17 a Tabela 20).
A inoculação com a mistura de cinco espécies de bactérias diazotróficas endofíticas
aparentemente não causou aumento significativo da estimativa da contribuição da FBN pelo
método da abundância natural de 15N nos experimentos deste estudo em variedades de canade-açúcar rústicas, estáveis em diferentes ambientes de produção e responsiva ao N. A
exceção foi o experimento em Mogi-Mirim (Tabela 17) conduzido com a variedade RB 72454
inoculada, no qual a estimativa da FBN pelo método que usa plantas invasoras como
referência foi 12% para inoculada e de 9% para a não inoculada, e pelo método considera a
distribuição da abundância natural de 15N disponível as plantas no perfil do solo foi em
média 63% para a inoculada e 60% para a não inoculada. A variedade RB 72454 é uma
variedade rústica e estável em diferentes ambientes. O canavial de Mogi-Mirim, em Nitossolo
Vermelho Eutroférrico, estava no 13º ano (ciclo cana-soca queimada) e não vinha sendo
adubado por três anos consecutivos. Entretanto, não se observou diferença entre a
produtividade de colmos em função da inoculação de bactéria (Tabela 22).
.
58
Tabela 21 - Abundância natural de 15N (δ15N) em plantas invasoras e em plantas cultivadas em vaso na camada (0-10 cm) do solo (Continuação).
Média
Desvio Padrão
Erro Padrão
Média
Desvio Padrão
Erro Padrão
Média
Desvio Padrão
Erro Padrão
Média
Desvio Padrão
Erro Padrão
Média
Desvio Padrão
Erro Padrão
Abundância Natural de 15N
Plantas Invasoras
δ15N (‰)
Mogi-Mirim
Cyperus esculentus
Digitaria sanguinalis
Euphorbia heterophylla
3,16
2,74
2,58
0,78
0,63
0,25
0,39
0,31
0,13
Jaú
Digitaria sanguinalis
Eleusine indica
Commelina benghalensis
5,09
4,84
3,74
0,42
1,05
0,56
0,21
0,52
0,28
Santa Maria da Serra
Digitaria sanguinalis Chamaesyce hyssopifolia
Cyperus esculentus
1,96
1,21
2,07
0,30
0,07
1,02
0,15
0,04
0,51
Piracicaba
Digitaria sanguinalis
Ipomoea triloba
Chamaesyce hyssopifolia
6,35
7,24
5,81
0,59
0,52
0,56
0,29
0,26
0,28
Sales I
Chamaesyce hyssopifolia Digitaria sanguinalis
Conyza spp
0,94
1,79
1,28
0,16
0,46
0,23
0,08
0,23
0,12
Plantas cultivadas em vaso
Média
2,83
0,47
0,23
Sorgo Repolho Azevém Média
4,90
5,86
5,38
0,88
1,05
0,15
0,44
0,52
0,08
Média
4,56
0,67
0,34
Sorgo Repolho Azevém Média
4,81
7,31
6,11
5,46
0,21
0,33
0,85
0,37
0,10
0,16
0,43
0,18
Média
1,74
0,40
0,20
Sorgo Repolho Azevém Média
4,60
6,89
6,02
5,31
0,77
0,69
0,80
0,56
0,38
0,34
0,40
0,28
Média
6,47
0,45
0,22
Sorgo Repolho Azevém Média
9,61
7,94
8,77
1,41
1,47
1,37
0,70
0,73
0,69
Média
1,34
0,22
0,11
Sorgo Repolho Azevém Média
4,46
3,91
3,69
4,08
0,28
0,17
0,23
0,23
0,14
0,08
0,11
0,12
59
Tabela 21- ......Continuação.
Média
Desvio Padrão
Erro Padrão
Abundância Natural de 15N
Plantas Invasoras
δ15N (‰)
Sales II
Chamaesyce hyssopifolia
Digitaria sanguinalis
Conyza spp Média
0,94
1,95
1,85
1,58
0,16
1,09
0,38
0,48
0,08
0,55
0,19
0,24
Plantas cultivadas em vaso
Sorgo Repolho Azevém Média
3,33
5,27
4,43
3,88
0,23
0,39
0,82
0,50
0,11
0,19
0,41
0,25
Tabela 22 - Resposta a N para produtividade de colmos em cana-de-açúcar em ciclo de cana-soca na dose N0 (0 kg ha-1 de N) com e sem
inoculação (inoc.) e na dose máxima N150 (kg ha-1 de N) no município de Mogi-Mirim.
Produção de colmos
Local
Variedade
N0
sem inoc. com inoc.
N 150
CV (%)
84,4
7,4
Resposta à adubação mineral
F
Pr<F
Produção f (N)
R²
t ha-1
Mogi-Mirim
RB 72454
70,4
68,9
8,5
0,0016
TCH=66,1+0,09N
0,60
Coeficiente de variação (CV), Teste F, Pr>F, Equação de resposta a N e R² estimados para o efeito das doses de N (0, 50, 100 e 150 kg ha-1) no ciclo de cana-soca
60
Tabela 23 - Resposta a N para produtividade de colmos em cana-de-açúcar em ciclo de cana-planta na dose N0 (0 kg ha-1 de N) com e sem
inoculação (inoc.) e dose máxima N90 ( 90kg ha-1 de N) no município de Jaú, Santa Maria da Serra, Piracicaba, Sales Oliveira ( I e II).
Produção de colmos
Local
Variedades
N0
sem inoc. com inoc.
N 90
CV (%)
F
Resposta à adubação mineral
Pr<F
Produção f (N)
R²
133,7
120,4
134,4
t ha-1
141,0
121,1
121,1
136,8
120,2
137,9
5,6
9,4
10,2
0,6
0,6
0,8
0,6480
0,6333
0,5008
-
Santa Maria da Serra RB 86-7515
RB 93579
SP 81-3250
61,4
65,8
46,4
61,7
66,1
46,4
87,2
98,1
74,2
7,0
9,4
10,4
39,5
23,3
22,3
<0,0001
<0,0001
<0,0001
TCH=92,8+1,28N-0,010N²
TCH=96,7+1,09N-0,006N²
TCH=70,0+1,24N-0,009N²
Piracicaba
CTC 14
IACSP 87-3396
SP 81-3250
118,7
107,5
100,5
115,3
115,3
100,8
117,0
103,9
115,0
12,6
7,5
8,5
0,2
1,4
1,9
0,8908
0,2852
0,1732
-
Sales I
IACSP 95-5000
RB 85-5536
SP 81-3250
110,4
100,5
100,9
114,8
98,7
98,1
140,9
116,0
115,1
6,2
7,1
9,2
14,9
6,1
4,0
<0,0001
0,0061
0,0278
TCH=113,0+0,32N
TCH=100,0+0,18N
TCH=101,2+0,45N-0,003N²
0,96
0,99
0,98
Sales II
IACSP 93-3046
RB 86-7515
SP 81-3250
94,2
108,3
92,0
90,2
98,3
87,3
112,4
102,5
99,2
9,4
12,5
7,8
5,2
0,5
2,6
0,0119
0,6715
0,0874
TCH=96,5+0,20N
TCH=92,8+0,21N-0,002N²
0,89
Jaú
IACSP 95-5000
RB 85-5536
SP 81-3250
Coeficiente de variação (CV), Teste F, Pr>F, Equação de resposta a N e R² estimados para o efeito das doses de N (0, 30, 60 e 90 kg ha-1) no ciclo de cana-planta.
0,99
0,95
0,99
0,66
61
Em estudos com trigo, SALA et al. (2007) avaliaram em condições de campo, o efeito
e a viabilidade econômica da inoculação de bactérias diazotróficas endofíticas (IAC-AT-8,
Azospirillum brasilense; IAC-HT-11,
Achromobacter insolitus; IAC-HT-12,
Zoogloea
ramigera), em dois genótipos de trigo (ITD-19 e IAC-370), sob diferentes doses de nitrogênio
(0, 60 e 120 kg ha-1) em duas localidades. Essas autoras verificaram que a inoculação
promoveu maior produção de matéria seca e acúmulo de N e aumentou a produtividade de
grãos, principalmente na presença de adubo nitrogenado, sendo que o maior aumento na
produtividade de grãos foi obtido nas plantas do genótipo IAC-370, com o emprego do
isolado IAC-HT-12 na ausência de N, superando em 45% o tratamento testemunha.
Entretanto, SALA et al. (2007) observaram que no genótipo ITD-19, sem adição de N, as
plantas que não receberam inóculo apresentaram maior produção de matéria seca da parte
aérea e acúmulo de N do que os tratamentos inoculados, demonstrando influência negativa da
inoculação. DIDONET et al. (2000) verificaram que a ausência de adubação nitrogenada
junto a inoculação em trigo pode causar decréscimo na matéria seca da parte aérea em
comparação com a testemunha, possivelmente pelo aumento do sistema radicular em relação a
parte aérea. FREITAS (2011), avaliando 162 isolados de bactérias diazotróficas endofíticas
presente em colmo e raiz de quatro variedades de cana-de-açúcar, verificou que 94
apresentaram produção de substâncias indólicas. Além disso, as bactérias são extremamente
dependentes das fontes de carbono disponibilizadas pelas plantas e a ausência de N pode
representar um alto custo da associação para planta. O que poderia explicar o fato de que no
município de Mogi-Mirim mesmo ocorrendo um aumento significativo da FBN pela
inoculação em cana-de-açúcar (Tabela 17), o teor de N na folha +1 foi igual à cana-de-açúcar
não inoculada (Tabela 24), e a produtividade de colmos foi semelhantemente à da cana-deaçúcar não inoculada (Tabela 22). Nos outros experimentos, o teor de N na folha +1 da canade-açúcar inoculada foram iguais ou ligeiramente maiores do que as não inoculadas (Tabela
25)
Em estudo com cana-de-açúcar, OLIVEIRA et al. (2006) avaliaram o efeito da
inoculação de misturas bacterianas em material micropropagado das variedades SP 70-1143 e
SP 81-3250 pela técnica de abundância natural de 15N em diferentes tipos de solo. Os autores
verificaram que a FBN contribuiu com até 38% do nitrogênio, contudo houve casos em que a
FBN foi muito menor ou nula em função da inoculação de misturas bacterianas, do tipo de
solo e da adubação. Os autores observaram que as variedades no ciclo de cana-planta
62
conduzida em Latossolo não mostraram efeito significativo da inoculação com as misturas
bacterianas e a adubação nitrogenada, e no ciclo de cana-soca as variedades conduzidas em
ARGISSOLO e LATOSSOLO também não houve efeito significativo da inoculação com as
misturas bacterianas e a adubação nitrogenada. GOVINDARAJAN et al. (2006) observaram
também um aumento da matéria seca em duas variedades de cana-de-açúcar associados à
inoculação de estirpes de bactérias diazotróficas endofíticas. Mas, esses autores demonstraram
que a inoculação de uma mistura de bactérias diazotróficas pode resultar num efeito negativo
no crescimento das plantas por causa da competição entre os microrganismos pela fonte de
carbono da planta. Os motivos para essas variações referentes à inoculação não foram ainda
totalmente esclarecidas, entretanto, sugere-se que a interação com os microrganismos nativos
do solo, genótipo da planta e condições edafoclimáticas estão relacionados.
Nas parcelas dos tratamentos avaliados neste estudo (N0 e N0+I), apesar do nitrogênio
ser um dos nutrientes absorvidos em maior quantidade pela cana-de-açúcar, não houve
aplicação de N fertilizante, as quantidade de N acumulado foram apresentados na Tabela 26.
Trabalhos sobre a eficiência de uso de N fertilizantes em cana-de-açúcar mencionam
que esta seja da ordem de 40% (TRIVELIN et al., 1995), 13% a 22% (GAVA et al., 2003) e
que cerca de 70% do N absorvido pela cana-de-açúcar venha do solo, FBN e deposição com a
água da chuva (CANTARELLA et al., 2007). Nos dois experimentos em que a FBN foi alta
(Mogi-Mirim e Santa Maria da Serra) as condições de suprimento de N pelo solo eram baixas:
em Mogi-Mirim a área não era adubada há três anos; em Santa Maria da Serra o solo arenoso
tinha baixo estoque de matéria orgânica (Tabela 2). Assim, é possível dizer que, nesses casos,
a contribuição da FBN possa ter sido importante.
63
Tabela 24 – Teor de N na folha +1 de cana-de-açúcar em ciclo de cana-soca em função das
doses N0 (0 kg ha-1 de N) com e sem inoculação (inoc.) e dose máxima N150 (150kg ha-1 de
N) no município de Mogi-Mirim.
Local
Teor médio de N na folha +1
N0
N 150
sem inoc.
Mogi-Mirim
(1)
14,8
Resposta a adubação mineral
CV (%)
F
com inoc.
g kg-1
14,8
16,0
4,4
*
inoc. = inoculação;
*significativo a 10% de probabilidade; Coeficiente de variação (CV), Teste F estimados para o efeito das doses
de N (0, 50, 100 e 150 kg ha-1) no ciclo de cana-soca
Tabela 25 – Teor de N na folha +1 de cana-de-açúcar em ciclo de cana-planta (média das três
variedades) em função das doses N0 (0 kg ha-1 de N) com e sem inoculação (inoc.) e dose
máxima N90 (90 kg ha-1 de N) no município de Jaú, Santa Maria da Serra, Piracicaba e Sales
Oliveira (I e II), média das três variedades.
Local
Teor médio de N na folha +1
N0
N 90
Resposta a adubação mineral
CV (%)
F
sem inoc.(1) com inoc.
Jaú
18,9
g kg-1
19,5
Santa Maria da Serra
15,4
15,5
17,1
6,7
*
Piracicaba
18,7
19,3
19,6
11
ns
Sales I
13,8
13,8
14,8
9,1
*
Sales II
14,7
15,2
15,3
7,4
ns
(1)
19,0
7,3
ns
inoc. = inoculação;
*significativo a 10% de probabilidade; Coeficiente de variação (CV) e Teste F estimados para o efeito das doses
de N (0, 30, 60 e 90 kg ha-1) no ciclo de cana-planta.
64
Tabela 26 - N acumulado em cana-de-açúcar (kg ha-1) na dose N0 (0 kg ha-1 de N) com e sem inoculação (inoc.) e dose máxima (Nmáx.). No
ciclo de cana-planta a dose máxima foi 90 kg ha-1 de N no município de Jaú, Santa Maria da Serra, Piracicaba, Sales Oliveira ( I e II). No ciclo de
cana-soca a dose máxima foi 150 kg ha-1 de N no município de Mogi-Mirim.
Local
N0
colmo ponteiro folhas secas MSPA
N acumulado
N0+inoc.
colmo ponteiro folhas secas MSPA
Nmáx.
colmo Ponteiro folhas secas MSPA
kg ha-1
Mogi-Mirim
Jaú
Santa Maria da Serra
Piracicaba
Sales I
Sales II
23,7
90,0
19,2
74,3
62,6
75,5
25,3
32,4
17,3
41,8
18,4
22,2
14,6
27,3
12,3
12,0
11,0
13,3
63,6
149,7
48,9
128,2
92,0
111,1
12,1
105,2
18,6
83,6
66,9
64,9
26,2
43,3
16,6
46,3
19,7
19,1
12,7
28,5
13,9
11,1
11,8
11,4
51,0
177,0
49,1
141,1
98,4
95,4
29,0
91,0
34,2
85,7
99,0
82,2
36,8
32,2
17,4
42,9
29,1
24,2
22,9
25,8
15,0
13,4
17,5
14,5
88,7
149,0
66,6
142,0
145,6
120,9
65
4.4 Considerações Finais
O método que utiliza os valores de δ15N das plantas invasoras como referência para
estimativa da FBN tem a vantagem de usar plantas que estão localizadas no mesmo ambiente
produtivo da cana-de-açúcar; contudo a baixa marcação de 15N dessas plantas provavelmente
reflete a exploração da camada mais superficial do solo, ao passo que a cana-de-açúcar pode
explorar (e absorver N) de camadas mais profundas. Em relação ao método que verifica a
distribuição da abundância de
15
N no perfil do solo, o cultivo em vaso com plantas de
referência que consigam extrair o N disponível no solo possivelmente dão uma melhor idéia
da distribuição da abundância natural de
15
N do N disponível a planta em cada camada do
solo, entretanto exige maior tempo para condução do experimento e a obtenção dos dados está
relacionada a condições ambientais diferentes do ambiente produtivo da cana-de-açúcar.
Assim, ambos os métodos possuem algumas limitações.
5 CONCLUSÃO
•
As estimativas de FBN por meio da técnica de abundância natural de
15
N
variaram consideravelmente quando avaliadas pelo método que utiliza plantas
invasoras como referência em comparação com o método que considera a
distribuição da abundância natural do 15N no perfil do solo;
•
O Método que leva em consideração a distribuição da abundância natural do
15
N no perfil do solo possivelmente fornece uma melhor estimativa da FBN,
variando de 21% a 90% de Ndfa.
66
6 REFERÊNCIAS BIBLIOGRÁFICAS
ALBUQUERQUE, G.A.C.; MARINHO, M.L. Adubação na região Norte-Nordeste. In:
ORLANDO FILHO, J. (Coord.). Nutrição e adubação da cana-de-açúcar no Brasil.
Piracicaba: Instituto do Açúcar e do Álcool, 1983. P.267-286.
AMBROSANO, E. A.; TRIVELIN, P. C. O.; CANTARELLA, H.; ROSSETTO, R.;
MURAOKA, T.; BENDASSOLLI, J. A. AMBROSANO, G. M. B.;; TAMISO, L. G.;
VIEIRA, F. C.; PRADA NETO, I. Nitrogen-15 labeling of Crotalária juncea Green manure.
Scientia agricola, v. 60, p. 181-184, 2003.
AZEREDO, D. F.; BOLSANELLA, J.; WEBER, H.; VIEIRA, J. R. Nitrogênio em canaplanta – doses e fracionamento. STAB- Açúcar , Álcool e Subproputos, v. 6, n.5, p. 26-33,
1986.
BALDANI, J.I.; TEIXEIRA, K.R.S.; SCHWAB, S.; OLIVARES, F.L.; HEMERLY, A.S.;
SEGUNDO URQUIAGA; REIS, V.M.; NOGUEIRA, E.M.; ARAUJO, J.L.S.; BORGES,
L.E.; SOARES, L.H.B.; VINAGRE, F.; BALDANI, V.L.D.; CARVALHO, T.L.G.; ALVES,
B.J.R.; JAMES, E.K; JANTALIA, C.P.; FERREIRA, P.C.G.; VIDAL, M.S.; BODDEY, R.M.
Fixação Biológica de Nitrogênio em Plantas da Família Poaceae (Antiga Graminea) In:
ALVAREZ, V.H.; SCHAEFER, C.E.; BARROS, N.F.; MELLO, J.W.V.; COSTA, L.M.
(Eds.). Tópicos em Ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, v.6,
p.203-271, 2009
BAPTISTA, R.B.; LEITE, J.M.; MORAIS, R.F.; REIS, V.M.; & SEGUNDO S.
URQUIAGA. Variação da abundância natural de 15N no perfil do solo e seu efeito na
estimativa da contribuição da fixação biológica de N2 em variedades de cana-de-açúcar. In:
CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 32., 2009, Fortaleza. Anais
eletrônicos... Fortaleza: UFCE/SBCS, 2009.
BASANTA, M. V.; DOURADO NETO, D.; REICHARDT, K.; BACCHI, O. O. S.;
OLIVEIRA, J. C. M.; TRIVELIN, P. C. O.; TIMM, L. C.; TOMINAGA, T. T.;
CORRECHEL, V.; CÁSSARO, F. A. M.; PIRES, L. F.; MACEDO, J. R. Eficiência no uso de
nitrogênio em relação aos manejos dos resíduos da cultura da cana-de-açúcar. In:
CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS ACÚCAREIROS E
ALCOOLEIROS DO BRASIL, 8, Recife, 2002. Anais... Olinda: STAB, 2002, p. 268-275.
BATAGLIA, O.C.; FURLANI, A.M.C.; TEIXEIRA, J.P.F.; FURLANI, P.R.; GALLO, J.R.
Métodos de análise química de plantas. Campinas: Instituto Agronômico, 1983. 48p.
(Boletim Técnico, 78).
BIGGS, I.M.; STEWART, G.R.; WILSON, J.R.; CRITCHLEY, C. N-15 natural abundance
studies in Australian commercial sugarcane. Plant and Soil, v.238, n.1, p. 21-30, 2002.
67
BOARETTO, A.E.; TRIVELIN, P.C.O; MURAOKA, T. Uso de isótopos como traçadores em
fertilidade do solo e nutrição de plantas. Centro de Energia Nuclear na Agricultura – USP.
Resumos expandidos... FERTBIO, 2004.
BODDEY, R.M.; POLIDORO, J.C.; RESENDE, A.S.; ALVES, B.J.R. & URQUIAGA, S.
Use of the 15N natural abundance technique for the quantification of the contribution of N2
fixation to sugar cane and other grasses. Australian Journal Plant Physiology, v.28, p.889895, 2001.
BODDEY, R.M.; URQUIAGA, S.; ALVES, B.J.R.; REIS, V.M. Endophytic nitrogen fixation
in sugarcane: present knowledge and future applications. Plant and Soil, v. 252, p.139-149,
2003.
BRASIL. Ministério da Agricultura Pecuária e Abastecimento. Balanço nacional da
cana‑de‑açúcar e da agroenergia. Disponível em: <http://www.agricultura.gov.br/>. Acesso
em: 10 jan. 2012.
BRASIL. Ministério da Agricultura Pecuária e Abastecimento. Cana‑de‑açúcar: Orientações
técnicas. Disponível em: <http://www.agricultura.gov.br/>. Acesso em: 11 jan. 2012.
CAMARGO, P. B. Dinâmica do nitrogênio dos fertilizantes: uréia (15N) e aquamônia (15N)
incorporados ao solo na cultura de cana-de-açúcar. Piracicaba, 1989. 104f. Dissertação
(Mestrado) – Escola Superior de Agricultura “Luiz de Queiroz”, Universdade de São Paulo,
Piracicaba, 1989.
CANTARELLA, H.; RAIJ, B. van. Adubação nitrogenada no estado de São Paulo In:
SANTA, M. B. M. (Ed.). Adubação nitrogenada no Brasil. Ilhéus: Sociedade Brasileira de
Ciência do Solo, p. 47-79, 1985.
CANTARELLA, H.; TRIVELIN, P.C.O. Determinação de nitrogênio inorgânico em solo pelo
método da destilação a vapor. In: Raij, B.; Andrade, J.C.; Cantarella, h.; Quaggio, J.A. (Ed.).
Análise química para Avaliação da fertilidade de solos tropicais. Campinas: Instituto
Agronômico, p.270-276, 2001.
CANTARELLA, H.; TRIVELIN, P.C.O.; VITTI, A.C. Nitrogênio e Enxofre na cultura da
cana-de-açúcar. In: Yamada, T.; Abdalla, S.R.S.; Vitti, G.C. (Ed.). Nitrogênio e Enxofre na
Agricultura Brasileira. Piracicaba: IPNI Brasil, p.355-392, 2007.
CARNEIRO, A. E. V.; TRIVELIN, P. C. O.; VICTORIA, R. L. Utilização da reserva
orgânica e de nitrogênio do tolete de plantio (colmo-semente) no desenvolvimento da canaplanta. Scientia Agricola, v. 53, n. 2, p. 199-209, 1995.
CAVALCANTE, V.A.; DÖBEREINER, J. A new acid-tolerant nitrogen-fixing bacterium
associated with sugarcane. Plant Soil, v. 108, p. 23-51, 1988.
68
CHAPMAN, L. S.; HAYSOM, M. B. C.; SAFFIGNA, P. G. N cycling in cane fields from
15N labeled trash and residual fertilizer. Proceedings of the Australian Society of Sugar
Cane Technologists, v. 14, p. 84-89, 1992.
CHAPMAN, L. S.; HAYSOM, M. B. C.; SAFFIGNA, P. G. The recovery of 15N from
labeled urea fertilizer in crop components of sugarcane and in soil profiles. Australian
Journal of Agricultural Research, v. 45, p. 1577-1585, 1994.
CONAB, 2011. Acompanhamento da Safra Brasileira Cana-de-Açúcar. Safra 2011/2012,
Terceiro Levantamento. Dez., 2011. Companhia Nacional de Abastecimento – Brasília.
COSTA, D.P.; KUKLINSKY-SOBRAL, J.; FREIRE, F.J.; SILVA, M.O.; BARBOSA, M.V.;
SILVA, M.C.B.; ANDRADE, P.A.M. Fixação Biológica de Nitrogênio por Bactérias
Endofíticas do Gênero Burkholderia Associadas à Cana-de-Açúcar. In:CONGRESSO
BRASILEIRO DE CIÊNCIA DO SOLO, 32., 2009, Fortaleza. Anais eletrônicos... Fortaleza:
UFCE/SBCS, 2009.
DIDONET, A. D.; LIMA, O, S.; CANDATEN, A. A.; RODRIGUES, O. Realocação de
nitrogênio e de biomassa para os grãos, em trigo submetido a inoculação de Azospirillum.
Pesquisa Agropecuária Brasileira, Brasília, v. 35, p. 401-411, 2000 .
DOBEREINER, J. Nitrogen-fixing bacteria of the genus Beijerinchia Derx in the rhizosphere
of sugarcane. Plant and Soil, v. 15, p.211-217, 1961.
ESPIRONELO, A.; RAIJ, B. van; PENATTI, C. P.; CANTARELLA, H.; MORELLI, J. L.;
ORLANDO FILHO, J.; LANDELL, M. G. A.; ROSSETTO, R. Cana-de-açúcar. In: RAIJ, B.
van; CANTARELLA, H.; QUAGGIO, J. A.; FURLANI, A. M. C. (Eds.). Recomendações de
adubação e calagem para o Estado de São Paulo. Campinas: Fundação IAC, 1996. p. 237239. (IAC. Boletim, 100).
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema Brasileiro de
classificação do solo. 2. ed. Rio de Janeiro: EMBRAPA,CNPS, 2006. 306p.
FARONI, C. E.; VITTI, A. C.; GAVA, G. J. C.; MANZONI, C. S.; PENATTI, C. P.;
TRIVELIN, P. C. O. Degradação da palha (15N) de cana-de-açúcar em dois anos
consecutivos. In: CONGRESSO BRASILEIRO DE CIÊNCIAS DE SOLO, 29, 2003,
Ribeirão Preto. Anais... Ribeirão Preto: Unesp/SBCS, 2003.
FREIRE, J. R. J. Fixação do nitrogênio pela simbiose rizóbio/leguminosas. In: CARDOSO, E.
J. B. N.; TSAI, S. M.; NEVES, M. C. P. Microbiologia do solo. p. 121-140, 1992.
FREITAS, R. P. Bactérias diazotróficas endofíticas associadas à cana-de-açúcar. 2011. 81f.
Dissertação (Mestrado em Agricultura Tropical e Subtropical). Instituto Agronômico,
Campinas.
FUENTES-RAMIREZ,
L.E.;
CABALLERO-MELLADO,
J.;
SEPULVEDA,
J.;
69
MARTINEZ-ROMERO, E. Colonization of sugarcane by Acetobacter diazotrophicus is
inhibited by high N fertilization. FEMS Microbiology Ecology, v.29, p.117-128, 1999.
GAVA, G. J. C.; TRIVELI, P. C. O.; VITTI, A. C.; OLIVEIRA, M. W. Balanço do nitrogênio
da uréa (15N) e da palhada (15N) no sistema solo-cana-de-açúcar (cana-soca) In:
CONGRESSO NACIONAL DOS TÉCNICOS AÇÚCAREIRO ALCOOLEIROS DO
BRASIL, 8, Recife, 2002. Anais... Olinda: STAB, p. 245-251, 2002.
GAVA, G. J. C.; TRIVELI, P. C. O.; VITTI, A. C.; OLIVEIRA, M. W. Recuperação do
nitrogênio (15N) da uréia e da palhada por soqueira de cana-de-açúcar (Saccharum spp.).
Revista Brasileira de Ciências do Solo, v. 27, p. 621-630, 2003.
GOVINDARAJAN,
M.;
BALANDREAU,
J.;
MUTHUKUMARASAMY,
R.;
GOPALAKRISHNAN, R.; LAKSHMINARASIMHAN, C. Improved yield of
micropropagated sugarcane following inoculation by endophytic Bulkholderia vietnamiensis.
Plant and Soil , v.280, p,239-252, 2006
GUILLER, K.E.; DAY, J.M. Nitrogen fixation in the rhizosphere: Significance in natural and
agricultural systems. p. 127-147. In: A.H. Fitter (ed.) Ecological Interactions in soil.
Blackwell Sci. Publ, Oxford, England, 1985.
HERRIDGE, D.F.; PEOPLES, M.B.. BODDEY, R.M. Global inputs of biological nitrogen
fixation in agricultural systems. Plant and Soil , v.311, p. 1-18. 2008.
HOEFSLOOT, G.; TERMORSHUIZEN, A.JL; WATT, D.A.;CRAMER, M.D. Biological
nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown
South African sugarcane cultivar. Plant and Soil, v. 277, n. 1-2, p. 85-96, 2005.
KENNEDY, I.R.; CHOUDHURY, A.T.M.A.; KECSKÉS, M.L. Non-symbiotic bacterial
diazotrophs in crop-farming systems: can their potential for plant growth promotion be better
exploited? Soil Biology & Biochemistry, v.36, p.1229-1244, 2004.
KORNDÖFER, G.H.; VALLE, M.R.; MARTINS, M.; TRIVELIN, P.C.O. Aproveitamento
do nitrogênio da uréia pela cana-planta. Revista Brasileira de Ciência do Solo, Campinas,
v.21, n.1, p.23-26, 1997.
LEDGARD, S.F.; FRENEY, J.R.; SIMPSON, J.R. Variations in natural enrichment of
15N in the profiles of some Australian Pasture Soils. Australian Journal of
Experimental Agriculture, Victoria, v.22, p.155-64, 1984.
MALAVOLTA, E.; VITTI, G. C. OLIVEIRA, S. A. Avaliação do estado nutricional das
plantas. Piracicaba: Associação Brasileira para a Pesquisa da Potassa e do Fosfato, p. 319,
1997.
70
MARQUES JR, R.B.; CANELLAS, L.P.; SILVA, L.G.; OLIVARES, F.L. Promoção de
enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e
bactérias diazotróficas endofíticas. Revista Brasileira de Ciência do Solo, v.32, p. 11211128, 2008.
MARTINS, R.C.R.; BORTOLUCI, J.P.; FLOH, E.I.S.; BARBOSA, H.R. Associações in
vitro entre bactérias endofíticas diazotróficas e calos de cana-de-açúcar. In: SIMPÓSIO
BRASILEIRO SOBRE ECOFISIOLOGIA, MATURAÇÃO E MATURADORES EM
CANA-DE-AÇÚCAR, 1., 2008, Botucatu. Anais... Botucatu: UNESP, 2008.
MORAIS, R. F.; QUESADA, D. M.; REIS, V. M.; URQUIAGA, S.; ALVES, B. J. R.;
BODDEY, R. M. Contribution of biological nitrogen fixation to Elephant grass (Pennisetum
purpureum Schum.). Plant and soil, DOI 10.1007/s11104-011-0944-2, 2011
MORAIS, R. F.; SOUZA, R. J.; LEITE, J. M.; SOARES, L. H. B.; ALVES, B. J. R.;
BODDEY, R. M.; URQUIAGA, S. Elephant grass genotypes for bioenergy production by
direct biomass combustion. Pesquisa Agropecuária Brasileira, Brasília, v.44, n.2, p.133140, fev. 2009
OLIVEIRA, A. L. M., URQUIAGA, S., BODDEY, R. M., Burnig cane: the long term effects.
International Sugar Journal, Bucks, v. 96, p. 272-215, 2002.
OLIVEIRA, A.L.M.; CANUTO, E.L.; REIS, V.M.; BALDANI, J.I. Response of
micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria.
Brazilian Journal of Microbiology, v.34, p.59-61, 2003.
OLIVEIRA, A.L.M.; CANUTO, E.L.; URQUIAGA, S., REIS, V.M.; BALDANI, J.I. Yield
of micropropagated sugarcane varieties in different soil types following inoculation with
diazotrophic bacteria. Plant and Soil, v.284, p.230-32, 2006.
OLIVEIRA, M. W. TRIVELIN, P. C. O.; KINGSTON, G.; BARBOSA, M. H. P.; VITTI, A.
C. Decomposition and release of nutrients from sugarcane trash in two agricultural
enviroments in Brazil. Proceedings of Australian Society of Sugar Cane Technologists,
v.24, p. 40, 2002.
ORLANDO FILHO, J.; RODELLA, A. A. Adubação nitrogenada em cana-planta:
perfilhamento e produtividade agrícola. STAB-Açúcar, Álcool e Subprodutos, v. 13, n. 3, p.
16-18, 1995.
ORLANDO FILHO, J.; RODELLA, A. A.; BELTRAME, J. A. LAVORENTI, N. A. Doses,
fontes e formas de aplicação de nitrogênio em cana-de-açúcar. STAB-Açúcar, Álcool e
Subprodutos, v. 17, n. 4, p. 39-41, 1999.
OTTO, R. Desenvolvimento de raízes e produtividade de cana-de-açúcar relacionados à
adubação nitrogenada. 2007. 117f. Dissertação (Mestrado em Agronomia)- Escola Superior
de Agricultura Luiz de Queiroz, 2007.
71
PEREIRA, W.; HIPÓLITO, G.S.; SANTOS , C.L.R.; ANTONIO, C.S. MOREIRA, L.L.Q.;
CARNEIRO, J.B.; REIS, V.M. Acúmulo de biomassa em plantas de cana-de-açúcar variedade
RB-72-454 inoculadas com bactérias diazotróficas. Resumos Expandidos... FertBio, 2008.
PEREIRA, W; SCHULTZ, N.; HIPÓLITO, G.; URQUIAGA, S.; REIS, V.M. Agronomic
Efficiency of the sugarcane inoculant. In: 12th International Symposium on Biological
Nitrogen Fixation with non-Legumes. Anais... Rio de Janeiro, 2010.
PEREIRA,W.; HIPÓLITO, G.S.; LEITE, J.M.; SANTOS, C.L.R.; CHAVES, V.A.;
ANTÔNIO, S.C.; REIS, V.M. Inoculação com Bactérias Diazotróficas em Duas Variedades
Comerciais de Cana-de-açúcar. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO,
32., 2009, Fortaleza. Anais eletrônicos... Fortaleza: UFCE/SBCS, 2009.
POLIDORO, J. C.; RESENDEA. S.; QUESADA, D. M.; XAVIER, R .P.; COELHO, C. H.
M.; ALVES, B. J. R.; BODDEY, R. M.; URQUIAGA, S. Levantamento da contribuição da
fixação biológica de nitrogênio para a cultura da cana-de-açúcar no Brasil. Embrapa
Agrobiologia, Seropédica, p. 8, 2001. (Embrapa Agrobiologia. Documentos, 144).
RAIJ, B. van; ANDRADE, J.C de.; CANTARELA, H.; QUAGGIO, J.A. Análise química
para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas, p.285,
2001
RAIJ, B. van; CANTARELLA, H.; QUAGGIO, J. A.; FURLANI, A. M. C. Recomendações
de adubação e calagem para o Estado de São Paulo. 2ed. Revista e atualizada. Campinas:
Instituto Agronômico; Fundação IAC, p. 285, 1996.
REIS JR., F.B.; SILVA, L.G.; REIS, V.M.; DÖBEREINER, J. Ocorrência de bactérias
diazotróficas em diferentes genótipos de cana-de-açúcar. Pesquisa Agropecuária Brasileira,
Brasília, v.35, n.5, p.985-994, maio 2000.
REIS, V.M. Uso de Bactérias Fixadoras de Nitrogênio como Inoculante para aplicação
em gramíneas. Embrapa Agrobiologia: documento 232, jun. 2007.
SALA, V. M. R.; CARDOSO, E. J. B. N.; FREITAS, J. G.; SILVEIRA, A. P. D. Resposta de
genótipos de trigo à inoculação de bactérias diazotróficas em condições de campo. Pesquisa
Agropecuária Brasileira, Brasília, v. 42, n. 6, p.833-842, 2007.
SAMPAIO, E. V. S. B.; SALCEDO, I. H.; BETTAMY, J. Dinâmica de nutrientes em canade-açúcar. I. Eficiência de utilização de uréia-15N em aplicação única ou parcelada. Pesquisa
Agropecuária Brasileira, v. 19, n. 8, p. 943-949, 1984.
SAS Institute Inc. 2004. SAS/STAT 9.1 User’s guide. Cary, NC: SAS Institute Inc., p.5136,
2004.
72
SCHULTZ, N.;PEREIRA, W.; BAPTISTA, R.B.; SILVA, J.A.; REIS, V.M.; URQUIAGA,
S. Productivity of sugar cane inoculated with diazotrophs in two experiments conducted in
Campos dos Goytacazes, Rio de Janeiro State. In: 12th International Symposium on
Biological Nitrogen Fixation with non-Legumes. Anais… Rio de Janeiro, 2010.
SHEARER, G.; KOHL, D H. Natural Abundance of 15N: Fractional Contribution of Two
Sources to a Common Sink and Use of Isotope Discrimination. In: KNOWLES, R.;
BLACKBURN, T.H.; Nitrogen Isotope Techniques. London: Academic Press, 1992. P. 89122.
SHEARER, G.; KOHL, D.H. N2 fixation in field setting: estimations based on natural 15N
abundance. Australian Journal Physiology, v.13, p.699-756, 1986.
SILVA, M. F.; OLIVEIRA, P. J.; XAVIER, G.R.; RUMJANEK, N. G.; REIS, V.M.
Inoculantes formulados com polímeros e bactérias endofíticaspara a cultura da
cana‑de‑açúcar. Pesquisa Agropecuária Brasileira, Brasília, v.44, n.11, p.1437-1443, nov.
2009.
SOUSA, D.M.G.; MIRANDA, L.N.; OLIVEIRA, S.A. Acidez do solo e sua correção. In:
NOVAIS, R.J.; ALVAREZ, V.H.; BARROS, N.F.; FONTES, R.L.F.; CANTARUTTI, R.B.;
NEVES, J.C.L. (Eds.) Fertilidade do Solo. Sociedade Brasieira de Ciências do Solo, Viçosa,
2007.
THORBURN, P. J.; PROBERT, M. E.; LISSON, S.; WOOD, A. W.; KEATING, B. A.
Impacts of trash retention on soil nitrogen and water: na example from the Australian
sugarcane industry. Proceedings of the South Africa Sugar Technologists Association,
v.73, p. 75-79, 1999.
THORBURN, P. J.; van ANTWERPEN, R.; MEYER, J. H.; BEZUIDENHOUT, C. N. The
impact of trash management on soil carbon and nitrogen: I Modelling long-term experimental
results in the South African sugar industry. Proceedings of the South Africa Sugar
Technologists Association, v.76, p. 260-268, 2002.
THORBURN, P.J; DART, I.K.; BIGGS, I.M.; BAILLIE, C.P.; SMITH, M.A.; KEATING,
B.A. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science, v. 22,
p.201-209, 2003.
TRIVELIN, P. C. O.; VICTORIA, R. L.; RODRIGUES, J. C. S. Aproveitamento por soqueira
de cana-de-açúcar de final de safra do nitrogênio da aquamônia-15N e uréia-15N aplicado ao
solo em complemento à vinhaça. Pesquisa Agropecuária Brasileira, v. 30, n. 12, p. 13751385, 1995.
URQUIAGA, S.; CRUZ, K.H.S.; BODDEY, R.M. Contribution of nitrogen fixation to sugar
cane: Nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal,
v.56, p.105-114, 1992
73
URQUIAGA, S.; XAVIER, R. P.; MORAIS, R. F.; BATISTA, R. B.; SCHULTZ, N.; LEITE,
J. M.; SÁ, J. M.; BARBOSA, K.P.; RESENDE, A. S.; ALVES, B. J. R.; BODDEY, R. M.
Evidence from field nitrogen balance and 15N natural abundance data for the contribution of
biological N2 fixation to Brazilian sugarcane varieties. Plant Soil, DOI 10.1007/s11104-0111016-3, 2011.
URQUIAGA; BODDEY, R.M.; ALVES, B.J.R. Protocolo para Avaliar a contribuição da
FBN em Canaviais Comerciais. Embrapa Agrobiologia, maio, 2007.
VALLIS, I.; CATCHPOOLE, V. R.; HUGHES, R. M. M.; MYERS, R. J. K.; RIDGE, D. R.;
WEIR, K. L. Recovery in plants and soils of 15N applied as subsurface bands of urea to
sugarcane. Australian Journal of Agricultural Research, v. 47, p. 355-370, 1996.
VAN BERKUM, P.; BOHLOOL, B.B. Evaluaion of nitrogen fixation by bacteria in
association with roots of tropical grasses. Microbiology Rev., v. 44, p. 491-517, 1980.
VASCONCELOS, A. C. M.; CASAGRANDE, A. A.; PERECIN, D.; JORGE, L. A. C.;
LANDELL, M. G. A. Avaliação do Sistema Radicular da cana-de-açúcar por diferentes
métodos. . Revista Brasileira de Ciência do Solo, v.27, p. 849-858, 2003.
VASCONCELOS, A. C. M.; CASAGRANDE, A. A. Fisiologia do Sistema Radicular. In:
DINARDO-MIRANDA, L. L.; VASCONCELOS, A. C. M.; LANDELL, M. G. A. (Ed.).
Cana-de-açúcar. Campinas: Instituto Agronômico, p. 79-98, 2008.
VITTI, A. C. Adubação nitrogenada da cana-de-açúcar (soqueira) colhida mecanicamente
sem a queima prévia: manejo e efeito na produtividade. Piracicaba, 2003. 114f. Tese
(Doutorado) – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo,
Piracicaba, 2003.
WATANABE, I.; YONEYAMA, T.; PADRE, B.; LADHA, J.K. Difference in natural
abundance of 15N in several rice (Oriza sativa L.) varieties: Aplication for evaluating N2
fixation. Soil Science Plant Nutrition, v. 33, p.407-415., 1987.
WEIR, K. L.; ROLSTON, D. E.; THORBURN, P. J. The potential for N losses via
denitrification between a green cane trash blanket. Proceedings of Australian Society of
Sugar Cane Technologists, v.20, p. 169-175, 1998.
YONEYAMA, T.; MURAOKA, T. KIM, T.H.; DACANAY, E.V. & NAKANISHI, Y. The
natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and
Miyako (Japan). Plant and Soil, Dordrecht, v. 189, p.239-244, 1997.
ZAMBELLO JR, E.; AZEREDO, D. F. Adubação na região Centro-Sul. In: ORLANDO
FILHO, J. (Coord). Nutrição e adubação da cana-de-açúcar no Brasil. Piracicaba: Instituto
do Açúcar e do Álcool, p. 289-313, 1983.
74
7 ANEXOS
7.1 Anexo I
Croqui do 1º Experimento na Fazenda Nova Aliança em Sales Oliveira, SP.
72
N6 0
66
N9 0
71
N9 0
65
N6 0
70
N6 0 +I
69
N0 +I
68
N0
60
N6 0 +I
59
N3 0
64
N0
58
Parcela:
N6 0
63
N3 0
N0 +I
62
N0 +I
5 sulcos
57
56
10 m
N9 0
67
61
55
var.B var.A var.C
N3 0
N6 0 +I
54
N3 0
BLOCO IV
N0
48
1,5 m
42
7,5 m
N0 +I N6 0 +I
53
N0 +I
52
N9 0
47
N3 0
46
N0
51
41
Variedade
N0
N9 0
45
39
50
N6 0
44
N6 0
38
N6 0 +I N6 0 +I N0 +I
36
30
BLOCO III
24
RB 85-5536
N0 +I
34
N0
29
N9 0
var.B
N0
33
23
27
21
IACSP 95-5000
N3 0
N3 0
32
N9 0
26
20
N6 0 +I N0 +I
N0 +I
var.C
controle
N30
dose baixa
N60
N0
N0
dose alta
controle + inoculação
N90
22
dose média
dose média + inoculação
N0+I
N60+I
N3 0
28
dose baixa
N60
N0
N6 0 +I N6 0
35
controle + inoculação
N30
N90
N6 0
Descrisão
controle
N0+I
N60+I
49
43
37
var.A var.C var.B
N9 0
var.A
N3 0
Carreador
N9 0
Tratamento
N0
SP 81-3250
N0
Código
40
dose média
dose média + inoculação
dose alta
controle
N0+I
controle + inoculação
N30
dose baixa
N60
N60+I
N90
dose média
dose média + inoculação
dose alta
31
25
19
var.B var.A var.C
N6 0
N6 0
18
N0
N0
17
N9 0
N6 0
N0 +I
2 sulcos N6 0 +I
14
5
N6 0
10
N3 0
15
4
N0
9
N6 0
3
7 sulcos
N9 0
8
2
N0 +I N6 0 +I N3 0
1,5 m
BLOCO II
6
11
N9 0
16
N6 0 +I
12
13
var.C
7
1
var.B var.A
N3 0
N0 +I N6 0 +I
canal
BLOCO I
carreador
75
7.2 Anexo II
Croqui do 2º Experimento na Fazenda Nova Aliança em Sales Oliveira, SP
72
66
60
N6 0 +I N0 +I N6 0 +I
71
N9 0
70
N6 0
69
N3 0
68
N0
65
N6 0
64
N0
59
N3 0
58
Parcela:
N6 0
63
N3 0
62
N9 0
5 sulcos
57
N0
56
10 m
N9 0
67
61
55
var.B var.A var.C
N0 +I N6 0 +I N0 +I
54
N0 +I
53
N3 0
52
N9 0
51
48
BLOCO IV
1,5 m
42
7,5 m
N0 +I N6 0 +I
47
N3 0
46
N0
41
Variedade
N0
N9 0
45
N9 0
Carreador
50
N6 0
44
N6 0
39
var.A
N3 0
38
49
43
37
var.A var.C var.B
36
30
BLOCO III
24
RB 86-7515
N9 0
35
N6 0
34
N0
N6 0
29
N9 0
28
N0
33
23
N3 0
22
N0
27
32
N3 0
21
N9 0
26
20
N6 0 +I N0 +I
N0 +I
controle + inoculação
N30
dose baixa
N60
dose média
var.C
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
IACSP 93-3046
N3 0
var.B
N6 0
Descrisão
controle
N0+I
N60+I
N6 0
N6 0 +I N6 0 +I N0 +I
Tratamento
N0
SP 81-3250
N0
Código
40
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
N90
dose média + inoculação
dose alta
31
25
19
var.B var.A var.C
N0 +I N6 0 +I N6 0 +I
18
12
BLOCO II
6
N6 0 +I N6 0 +I N0 +I
17
N9 0
16
N6 0
11
N9 0
10
N3 0
15
7 sulcos
N0
9
N6 0
14
N3 0
canal
1,5 m
5
N6 0
8
N0
4
N0
3
N9 0
2 sulcos
2
N3 0
13
var.C
7
1
var.B var.A
N0 +I
N0 +I N6 0 +I
BLOCO I
carreador
76
7.3 Anexo III
Croqui do Experimento no Polo Centro Oeste da APTA em Jaú, SP.
34
N9 0
N6 0
31
N6 0
N0
N3 0
N6 0 +I
N6 0 +I
33
67
N9 0
30
N6 0
27
61
N9 0
23
N3 0
24
N0 +I N6 0 +I
N6 0 +I N0 +I
16
17
N0
BLOCO II
N9 0
N9 0
10
65
N0
Orlândia, SP
N6 0 +I
69
Parcela:
N3 0
N0 +I
N3 0
59
63
8m
N0
10 m
60
1,5 m
N9 0
N6 0 +I
N0 +I
53
54
N0 +I
49
B6 0
N3 0
12
N3 0
47
7,5 m
BLOCO III
Variedade
N6 0 +I
50
46
55,5
m
N3 0
7
N0
N0
8
N6 0
4
N3 0
N9 0
9
43
N9 0
5
N0
N0
6
40
N3 0
N6 0
1
2
3
var.C var.B
var.A
N0 +I
N0 +I N6 0 +I
1,5 m
N0
N0
48
var.A
N9 0
44
N9 0
41
N6 0
N6 0 +I N6 0 +I
45
42
N6 0
BLOCO IV
IACSP 95-5000
var.B
controle + inoculação
N30
dose baixa
N60
dose média
estrada
RB 85-5536
var.C
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
22,5 m
Descrisão
controle
N0+I
N60+I
N3 0
N0 +I
Tratamento
N0
37
38
39
var.A var.C
var.B
BLOCO I
Código
51
SP 81-3250
N6 0
5 sulcos
66
N6 0
62
52
15
11
N6 0
N9 0
N0 +I
18
14
68
72
55
56
57
var.B var.A
var.C
N6 0 +I N6 0 +I N0 +I
13
N0 +I
58
19
20
21
var.B var.A
var.C
N0 +I
71
64
N0
26
N3 0
22
70
N3 0
29
N0
25
36
N6 0
32
N9 0
28
carreador
35
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
N90
dose média + inoculação
dose alta
77
7.4 Anexo IV
Croqui do Experimento no Polo Centro Sul da APTA em Piracicaba, SP
estrada
63
N0
34
N9 0
N6 0
N0
N3 0
N3 0
22
N6 0 +I
N6 0 +I
33
67
N9 0
30
N6 0
27
61
N9 0
23
N3 0
24
N0 +I N6 0 +I
N0
16
17
BLOCO II
N9 0
N9 0
10
N0 +I
N0
62
10 m
N3 0
59
10 m
60
1,5 m
N9 0
N6 0 +I
N0 +I
53
54
N0 +I
49
B6 0
N3 0
12
N3 0
47
Variedade
N6 0 +I
50
46
7,5 m
BLOCO III
canal
67,5
m
N3 0
7
N0
N0
8
N6 0
4
N3 0
N9 0
9
43
N9 0
5
N0
N0
6
40
N3 0
N6 0
1
2
3
var.C var.B
var.A
N0 +I
N0 +I N6 0 +I
1,5 m
N0
N0
48
var.A
N9 0
44
N9 0
41
N6 0
N6 0 +I N6 0 +I
45
42
N6 0
BLOCO IV
IAC 87-3396
var.B
controle + inoculação
N30
dose baixa
N60
carreador
CTC 14
var.C
dose média
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
N60+I
22,5 m
Descrisão
controle
N0+I
N60+I
N3 0
N0 +I
Tratamento
N0
37
38
39
var.A var.C
var.B
BLOCO I
Código
51
SP 81-3250
N6 0
5 sulcos
65
52
15
11
Parcela:
N6 0
N9 0
N0 +I
18
14
68
55
56
57
var.B var.A
var.C
N6 0 +I N6 0 +I N0 +I
13
Orlândia, SP
N0 +I
carreador
N6 0 +I N0 +I
71
58
19
20
21
var.B var.A
var.C
N0 +I
N6 0 +I
64
N0
26
72
70
N3 0
29
N0
25
N3 0
36
N6 0
32
N9 0
28
69
N6 0
35
N6 0
31
66
dose média
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
N60+I
N90
dose média
dose média + inoculação
dose alta
78
7.5 Anexo V
Croqui do Experimento na Fazenda Itaúna em Santa Maria da Serra, SP
N9 0
N6 0
31
N6 0
N0
N3 0
N6 0 +I
N6 0 +I
33
67
N9 0
30
N6 0
27
61
N9 0
23
N3 0
24
N0 +I N6 0 +I
N6 0 +I N0 +I
16
17
N0
BLOCO II
N9 0
N9 0
10
65
N0
Orlândia, SP
N6 0 +I
69
Parcela:
N3 0
N0 +I
N3 0
59
63
15 m
N0
10 m
60
N9 0
N6 0 +I
N0 +I
53
54
N0 +I
49
B6 0
N3 0
12
N3 0
47
1,0 m
5,0 m
BLOCO III
Variedade
N6 0 +I
50
46
97,5
m
N3 0
7
N0
N0
8
N6 0
4
N3 0
N9 0
9
43
N9 0
5
N0
N0
6
40
N3 0
N6 0
1
2
3
var.C var.B
var.A
N0 +I
N0 +I N6 0 +I
1,5 m
N0
N0
48
var.A
N9 0
44
N9 0
41
N6 0
N6 0 +I N6 0 +I
45
42
N6 0
BLOCO IV
IACSP 94-2094
var.B
controle + inoculação
N30
dose baixa
N60
dose média
estrada
RB 86-7515
var.C
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
15 m
Descrisão
controle
N0+I
N60+I
N3 0
N0 +I
Tratamento
N0
37
38
39
var.A var.C
var.B
BLOCO I
Código
51
SP 81-3250
N6 0
5 sulcos
66
N6 0
62
52
15
11
N6 0
N9 0
N0 +I
18
14
68
72
55
56
57
var.B var.A
var.C
N6 0 +I N6 0 +I N0 +I
13
N0 +I
58
19
20
21
var.B var.A
var.C
N0 +I
71
64
N0
26
N3 0
22
70
N3 0
29
N0
25
36
N6 0
32
N9 0
28
carreador
35
carreador
34
dose média + inoculação
N90
dose alta
N0
controle
N0+I
controle + inoculação
N30
dose baixa
N60
dose média
N60+I
N90
dose média + inoculação
dose alta
79
7.6 Anexo VI
Croqui do experimento na Fazenda Aparecida em Mogi Mirim, SP
ÁREA SEM APLICAÇÃO DE NITROGÊNIO
ÁREA COM APLICAÇÃO DE NITROGÊNIO
Doses de N e Inoculação de bactérias endofíticas
Inoculação de bactérias endofíticas
QUADRANTE 251
27
N50+I
28
8
N50
25
N50
QUADRANTE 251
Bloco
IV
26
7
N0+I
Inoc.
23
N150
24
N100
21
N0+I
6
22
N50+I
Bloco
III
5
BLOCO III BLOCO IV
19
20
N100
Inoc.
N100+I
4
17
18
Inoc.
N100+I
N0
15
N0
Bloco
II
16
3
N150
13
N0
14
2
N0
11
N100
Bloco
I
12
1
N100
Inoc.
9
N150
10
N50+I
7
N100+I
8
N150
BLOCO I BLOCO II
5
6
N0+I
N0+I
3
N50+I
RB 72-454
Faixa com
aplicação de N
(12 linhas de plantio)
4
Detalhe da parcela:
N100+I
1
N50
Variedade de cana-de-açúcar plantada:
2
10 m
N50
1,4 m
carreador
7.0 m
80
Nome do arquivo:
Diretório:
Modelo:
Dissertação final 18-06
C:\Users\Cybeli\Desktop\Impressão
C:\Users\Cybeli\AppData\Roaming\Microsoft\Modelos\N
ormal.dotm
Título:
Assunto:
Autor:
Cybeli
Palavras-chave:
Comentários:
Data de criação:
20/06/2012 11:05:00
Número de alterações:2
Última gravação:
20/06/2012 11:05:00
Salvo por:
Cybeli
Tempo total de edição:
1 Minuto
Última impressão:
20/06/2012 11:06:00
Como a última impressão
Número de páginas:
91
Número de palavras:
23.590 (aprox.)
Número de caracteres: 127.392 (aprox.)
Download