Arquitetura das Redes de Neurônios Tiposdearquitetura • Ar/ficial • Determinadapordados experimentais(data-driven) ArquiteturasAr/ficiais • • • • GrafodeErdős–Rényi Mundopequeno Livredeescala … Solé&Valverde,2004 TeoriadeGrafos:algumasdefinições Grafo:direcionadoou não-direcionado Arestas:bináriasou ponderadas Network Architectures and Metrics Graphs: Visualization Graphs can be displayed in matrix form or by embedding them in (usually 2D) space. Graph embedding and visualization is an extremely active area of research in its own right@. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. matrizdeadjacências Visualizing a graph goes a long way towards understanding its structure. www.brain-connec/vity-toolbox.net Redescomplexas Regular Lgrande,Cgrande MundoPequeno Lpequeno,Cgrande Erdős–Rényi Lpequeno,Cpequeno Aumentonaaleatoriedadedasconexões ! WaZs&Strogatz(1998)Nature393,440 of random links (Figure Ib). Combining elements of order and randomness, such networks were characterized by high degrees of local clustering as well as short path lengths, properties shared by genetic, metabolic, ecological and information networks [1–3]. The nodes in random graphs have approximately the same DEGREE (number of connections). This homogeneous architecture generates a normal (or Poisson) degree distribution. However, the degree distributions of most natural and technological networks follow a random networks but with significantly higher values for the clustering coefficient. At the structural level, cortical networks either do not appear to be scale-free [35] or exhibit scale-free architectures with low maximum degrees [44], owing to saturation effects in the number of synaptic connections, which prevent the emergence of highly connected hubs. Instead, functional brain networks exhibit power law degree distributions as well as smallworld attributes [52,62]. Tiposderedescomplexas (b) L=1.79 (0.04) C=0.52 (0.04) (a) L=1.68 (0.01) C=0.35 (0.03) rk Architectures and Metrics (c) L=1.73 (0.06) C=0.52 (0.05) Spornsetal.(2004) TrendsCognSci8,418 ll-World Networks lustering Figure andI. Structure path oflength aloneandare insufficient to have fully characterize random, small-world scale-free networks. All networks 24 nodes and 86 connections with nodes arranged on a circle. The characteristic path length L and the clustering coefficient C are shown (mean and standard deviation for 100 examples in each case; only one example network is drawn). (a) Random Erdős–Rényi Mundopequeno Livredeescala etwork topology. There are several types of small-world architectures. network. (b) Small-world network. Most connections are among neighboring nodes on the circle (dark blue), but some connections (light blue) go to distant nodes, creating short-cuts across the network. (c) Scale-free network. Most of the 24 nodes have few connections to other nodes (red), but some nodes (black connections) are linked to more than 12 other nodes. For comparison, an ideal lattice with 24 nodes and 86 connections has LZ1.96 and CZ0.64. Modular and wiring [19], our focus is on the large-scale and dynamics of neurons and neuronal populations result in intermediate-scale networks of the cerebral cortex, allowpatterns of statistical dependencies (functional connecing us to examine links between neural organization and tivity) and causal interactions (effective connectivity), cognition arising at the ‘systems’ level. We divide this defining three major modalities of complex brain networks review into three parts, devoted in turn to the organiz(Box 2). Human cognition is associated with rapidly ation (structure), development (growth) and function changing and widely distributed neural activation pat(dynamics) of brain networks. terns, which involve numerous cortical and sub-cortical 4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT regions activated in different combinations and contexts [12–15]. Two major organizational principles of the Structural organization of cortical networks cerebral cortex are functional segregation and functional Most structural analyses of brain networks have been gular graph with shortcuts C integration [16–18], enabling the rapid extraction of carried out on datasets describing the large-scale conneccommunities information and the generation of coherent brain states. tion patterns of the cerebral cortex of rat [20], cat [21,22], Which structural and functional principles of complex and monkey [23] – structural connection data for the networks promote functional segregation and functional human brain is largely missing [24]. These analyses have integration, or, in general, support the broad range and revealed several organizational principles expressed flexibility of cognitive processes? within structural brain networks. All studies confirmed Graph with hierarchically arranged modules C In this review we examine recent insights gained about that cerebral cortical areas in mammalian brains are fractal (self-similar) adjacency patterns of brain connectivity from thematrix application of novel neither completely connected with each other nor ranquantitative computational tools and theoretical models to domly linked; instead, their interconnections show Figure 1. Schematic view a of a hierarchical cluster network with five clusters containing five sub-clusters each. Kaiseretal.(2007)NewJPhys9,110 empirical datasets. Whereas many studies of single specific and intricate organization. Methodologically, Strogatz (1998) Nature 393, 440. Kaiser etmorphology al. (2007) Newinvestigations J Phys 9, 110. have used either graph(a) theoretical(b) (c) neuron networks have revealed their complex Livrede Escala Hierárquica emodular k Architectures and Metrics p of Network Architectures Redescomplexassãocomuns al-world networks occupy distinct locations in a continuous space of sible network architectures. Internet Solé&Valverde(2004)LectNotesPhys650,189 lverde (2004) Lect Notes Phys 650, 189. Tráfegoaéreo 15 Rede metabólica Redes sociais Review the intuitive, common sense notion of complexity by emphasizing the idea that complex systems are neither completely regular nor completely random. For example, neither a random string nor a periodically repeating string of letters is complex, while a string of English text certainly is. More generally, any system of elements arranged at random (e.g. gas molecules) or in a completely regular or homogeneous way (molecules in a crystal lattice) is not complex. By contrast, the arrangement and interactions of neurons in a brain or of molecules in a cell is obviously extremely complex (see Fig.). Redescomplexasnocérebro TRENDS in Cognitive Sciences (a) Vol.8 No.9 September 2004 421 (c) Lattice Clustering coefficient 0.6 ar fr w re iz v fo q (h Macaque visual cortex 0.5 0.4 Random 0.3 (b) 1.7 1.8 Path length co n tr n th b n d o tu st y 1.9 R (d) Tononietal.(1998)TrendsCognSci2,474 104 Counts (k) 500 Counts (k) 103 0 102 700 800 Degree k 101 rc = 0.6 rc = 0.7 100 100 101 102 103 Degree k Figure 1. Small-world and scale-free structural and functional brain networks. (a) Characteristic path length and clustering coefficient for the large-scale connection matrix (see Glossary) of the macaque visual cortex (red) (connection data from [23], results modified from [35]). For comparison, 10 000 examples of equivalent random and lattice networks are also shown (blue). Note that the cortical matrix has a path length similar to that for random networks, but a much greater clustering coefficient. (b) Cluster structure of cat corticocortical connectivity, based on [32] and visualized using Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). Bars indicate borders between nodes in separate clusters. Cortical areas were arranged around a circle by evolutionary optimization, so that highly inter-linked areas were placed close to each other. The ordering agrees with the functional and anatomical similarity of visual, auditory, somatosensory-motor and frontolimbic cortices. (c) A typical functional brain network extracted from human fMRI data (from [52]). Nodes are colored according to degree (yellowZ1, greenZ2, redZ3, blueZ4, other coloursO4). (d) Degree distribution for two correlation thresholds. The inset depicts the degree distribution for an equivalent random network (data from [52]). A number of complexity measures have been proposed, but only a few satisfy the requirement of attaining small values for both completely random and completely regular systems. In neurobiology, for example, one often encounters the term ‘dimensional complexity’ or just ‘complexity’ referring to the socalled correlation dimension of EEG signalsa. Its value appears to increase, for instance, from sleep to waking states, or with brain maturationb,c. The correlation dimension is a measure developed in the context of nonlinear dynamics, which should be proportional, roughly speaking, to the number of independent neuronal populations giving rise to an EEG signald. But because the correlation dimension would be higher for complete independence than for the mixture of functional segregation and integration that characterizes brain dynamics, it violates the criterion for complexity mentioned above. Complexity measures have been proposed in the context of algorithmic information theory, which deals with the information necessary to generate individual bit strings. For example, the well-known algorithmic (or Asorganizaçõesestruturaise funcionaisdocérebrotêm caracterís/casderedescomplexas– comotopologiademundopequeno, hubsaltamenteconectadose modularidade–,tantonaescalado cérebrointeiro(reveladaportécnicas deneuroimagememhumanos)como the system, summed over all subset sizes. Thus, com naescalacelular(reveladapor provides a measure for the amount of information integrated within a neural system (for a discuss estudosemanimais). complexity measures, see Box 2). CONNECTEDNESS of neural structures can affect the funcSpornsetal.(2004)TrendsCognSci8,418 A schematic illustration of the notion of comp tional impact of local and remote network lesions [43], and Bullmore&Sporns(2009)NatRevNeurosci10,186 this property might also be an important factor for based on the results of large-scale computer simulati as well as primate prefrontal cortex [41]. The algorithm could be steered to identify clusters that no longer contained any known absent connections, and thus Modelosderedescomplexas paraasredescerebrais (anatômicasefuncionais) Redesdemundopequenosãoummodeloatraentepara aorganizaçãodasredesanatômicasefuncionaisdo cérebroporqueatopologiademundopequenopermite conciliarduasformasdis/ntasdeprocessamentode informação:segregada(especializada)edistribuída (integrada). Basset&Bullmore(2006)TheNeuroscien/st12,512 Determinadapordados • Incorporainformaçãoquan/ta/vasobreaarquitetura deredescerebraisreais Sirosh&Miikkulainen,19942004 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Mazzaetal.,2004 OlfactoryEpithelium OlfactoryBulb Olfactorycortex Simões-de-Souza&Roque,2004 Escalaespacial:macrooumicroscópica Global:connec/vitybetweencor/calareas Local:connec/vitybetweenneuronsincor/callayers/ • A figura abaixo ilustra o padrão geral de conexões excitatórias Short-scale cortical connectivity: layers columns corticais. Connec/vitybetweenneuronsinnon-cor/calstructures(e.g.hippocampusdentategyrus) 1568 DYHRFJELD-JOHNSEN ET AL. NETWORK REORGANIZATION IN EPILEPSY TABLE 1. 1569 Connectivity matrix for the neuronal network of the control dentate gyrus Granule Cells Mossy Cells Basket Cells Axo-axonic Cells MOPP Cells HIPP Cells HICAP Cells IS Cells Downloaded from http://jn.physiology.org/ a Downloaded from http://jn.physiology.org/ at CAPE Granule cells X 9.5 15 3 X 110 40 20 (1,000,000) X 7–12 10–20 1–5 X 100–120 30–50 10–30 ref. [1–5] ref. [6]of ref. [7] ref. [6–9] ref. [6,7,9] ref. [6] ref. [4,10,11] ref. [4,7,10,11] ref. [7] FIG. 1. Schematic of the basic circuitry the dentate gyrus andcells the changes to 32,500 the netMossy 350 7.5 7.5 5 600 200 X work during sclerosis. A: relational30,000–35,000 representa(30,000) 200–500 5–10 5–10 5 600 200 X tion of the healthy the ref.dentate [11] gyrus illustrating ref. [4,11–13] ref. [12,13] ref. [13] ref. [13] ref. [14] ref. [12,13] ref. [12,13] ref. [15] network connections between the 8 major cell Basketcell; cellsBC, basket cell; 1,250 75 35 X X 0.5 X X types: GC, granule MC, (10,000) 1,000–1,500 50–100 20–50 X X 0–1 X X mossy cell; AAC, axo-axonic cells; MOPP, [16,17] with axons ref. [4,16–19] ref. [11,16,17,19] ref. [16,17,20,21] ref. [18] ref. [18] ref. [18] ref. [18] ref. [10,20] molecular layer ref. interneurons in perforant-path termination zone; interAxo-axonic cellsHIPP, hilar 3,000 150 X X X X X X neurons with axons in perforant-path termina(2,000) 2,000–4,000 100–200 X X X X X X tion zone; HICAP, axref. hilar [4,22]interneurons ref.with [4,18,22] ref. [4,5,11,14,23] ref. [5,18] ref. [5,18] ref. [5,18] ref. [5,18] ref. [5,18] ref. [5,18,19] ons in the commissural/associational pathway MOPP 7,500 X 40 1.5 7.5 X 7.5 X termination zone; andcells IS, interneuron selective 5,000–10,000 X 30–50 1–2 5–10 X 5–10 X cells. Schematic(4,000) shows the characteristic locaref.cell [11,14] [14] ref. [14,24] ref. [14,25] ref. [14,26] ref. [14,25] ref. [14,20,25] ref. [14,25] ref. [14,15] tion of the various types within theref. 3 layers of the dentateHIPP gyrus. Note, however, that this cells 1,550 35 450 30 15 X 15 X diagram does not indicate the topography of (12,000) 1,500–1,600 20–50 400–500 20–40 10–20 X 10–20 X axonal connectivity (present in both strucref. [11] ref.the[4,11,20] ref. [4,11,12,27,28] ref. [4,11,20] ref. [20,25] ref. [25] ref. [14,20,25] ref. [25] ref. [15,20] tural and functional dentate models) or the soHICAP cells 700 35 175 X 15 50 50 X matodendritic location of the synapses (incor(3,000) 700 30–40 150–200 X 10–20 50 50 X porated in the functional network models). B1: [5,29,30] ref. [4,11,20] ref. [20] ref. [4,11,20] ref. [20] ref. [14,20] ref. [20] ref. [20] schematic of theref. excitatory connectivity of the IS cells X 7.5 X X 7.5 7.5 450 healthy dentate gyrus is illustrated (onlyX cell X X 5–10 X X 5–10 5–10 100–800 types in the hilus(3,000) and granule cells are shown). Note that the granule cell axons (the ref. [15,29,30] ref.mossy [15] ref. [15] ref. [15,19] ref. [15] ref. [19] ref. [19] ref. [15] fibers) do not contact other granule cells in the healthy network.Cell B2: numbers schematicand of connectivity the dentate values were estimated from published data for granule cells, Mossy cells, basket cells, axo-axonic cells, molecular layer gyrus at 50% sclerosis shows theaxons loss (indicated interneurons with in perforant-path termination zone (MOPP), hilar interneurons with axons in perforant-path termination zone (HIPP), hilar interneurons by the large ✕with symbols) the population axons of in half the commissural/associational pathway termination zone (HICAP), and interneuron-selective cells (IS). Connectivity is given as the number of Arquiteturamicroscópica(córtex) • Subdivisãodoneocórtexem6camadas • Ascamadasdiferememtermosde densidadese/posdecélulas Abeles,1991 Tuckwell(2006) Arquiteturamicroscópica(córtex) Arquiteturamicroscópica(córtex) conexõesaferenteseeferentes • Aferentes – Externas(não-locais).Origem: • Tálamo(aferentestálamo-cor/cais) principalmenteparaacamadaIV • Outrasáreascor/cais(aferentescór/cocor/cais)viamatériabranca principalmenteparaascamadas superficiais – Entradasvindasdeneurônioscor/caisna vizinhançalocal • Eferentes – Eferentescór/co-cor/caisdosneurônios piramidaisdascamadasII/III – Eferentescór/co-talâmicosdos neurôniospiramidaisdacamadaVI – Axôniosdeneurôniospiramidaisgrandes dacamadaVparaotroncoencefálicoea medulaespinhal Abeles,1991 Arquiteturamicroscópica:conexõesver/cais Cadafiguramostraaproporçãodototaldesinapsesnocórtexvisualprimáriodogatoque existeentreos/posdeneurôniosindicados.Osnúmerostotaisdesinapsesdacada/po tambémestãoindicados. EàE 13.6x1010 EàI 2.1x1010 IàE IàI 2.4x1010 0.4x1010 Binzeggeretal.,2004 Arquiteturamicroscópica(córtex): Conexõeshorizontais • Sinapseslocais:feitasporcolateraisdosaxôniosemumraiode cercade0,5mm(todosos/posdeneurônios). • Conexõesintrínsecasdelongoalcance:feitasporneurônios piramidais,alcançamdistânciasdeváriosmilímetrospassando pelamatériacinzenta. • Conexõesextrínsicasdelongoalcance:feitasporneurônios piramidaisatravésdamatériabranca. Vogesetal.,2010 Arquiteturamicroscópica(córtex): Conexõeslocais • Aprobabilidadedeumaconexãosináp/caentredois neurônioscor/caisadjacentescaiparazeroauma distânciahorizontaldecercade0,5mm Hellwig,2000 Boucseinetal.,2011,2000 Arquiteturamicroscópica(córtex): Conexõesdelongoalcance • Asconexõesintrínsecasdelongoalcanceformamum padrãode“retalhos”:osneuroniospiramidaisprojetamseus axôniosparaagrupamentoscelulares Vogesetal.,2007 Lundetal.,2003 Arquiteturamacroscópica Felleman&VanEssen,1991 Arquiteturamacroscópica(córtex) § Asáreascerebraissãotratadascomonósdarede § Asconexõesentreosnóssãoreveladaspordiferentes técnicas:neuroimagem,traçadoresradioa/vos,etc Bressler&Menon,2010 ImagemporTensordeDifusão (diffusiontensorimaging–DTI) • Cadanócorrespondeauma áreadocérebro • Nãopermiteadeterminação dasconexõesdentrodecada área • Conexõesbinárias(há/não há,semponderação) • Nãopermitedeterminaros atrasosnasconexões • Nãopermitedis/nguirentre conexõesausentesou desconhecidas Honeyetal.,2007 Arquiteturamacroscópica(córtex) • Estruturahierárquicaemodular • “Clubedericos” Meunieretal.,2010 VandenHeuvel&Sporns,2011 Juntandotudo:modelosde neurôniosesinapsesemumarede comumadadaarquitetura (algunsmodelosselecionados) RedesdeErdős–Rényi:modelodeBrunel • NeurôniosLIF:80%excitatórios,20%inibitórios • Conec/vidadeesparsa(#conexõesk<<#neurôniosN) NE=10.000 NI=2.500 p=0,1 CE=conexões recebidaspelas célulasE=1.000 CI=250 Tiposdea/vidadeemum modeloderedeneuronal (a) Assíncronaregular:aa/vidadeda populaçãoéaproximadamente constanteeosneurônios individuaisdisparamdeforma regular; (b) Síncronaregular:Tantoa a/vidadepopulacionalcomoados neurôniosindividuaissão oscilatórias; (c) Síncronairregular:aa/vidade populacionaloscilaeosneurônios individuaisdisparamdeforma irregular; (d) Assíncronairregular:aa/vidade populacionaléaproximadamente constanteeosneurônios individuaisdisparamdeforma irregular. Vogelsetal.(2005) Estadobalanceado • Ocórtexoperaemumestado balanceadoemqueosvalores médiosdascorrentesdeentrada excitatóriaeinibitóriaemum neurôniosecancelam mutuamente. • Osdisparosdeumneurôniosão causadosporflutuaçõesemtorno daentradamédialíquida. • Issoexplicaosdisparosirregulares dosneurônios(parecendoruído)no estadoassíncronoirregular(AI). RedesdeErdős–Rényi:modelodeVogelseAbboZ N=10.000neurôniosLIF;p=0,02;#excitatórios/#inhibitórios=4:1 Plas/cidadeemummodelodesistemasensorial: Estudossobrelesões Modelocomarquiteturacor/calmicroscópica Potjans & Diesmann (2014) Modelocomarquiteturacor/calmicroscópica (modelosdeneurôniosindividuaisbiofisicamentedetalhados) hZp://bluebrain.epfl.ch/ • ProjetoBlueBrain:modelodeumacolunacor/caldorato jovemcom10.000neurôniosreconstruídosmorfologicamente interconectadospor3x107sinapses • RodanosupercomputadorparaleloBlueGene:8912 processadores.Umasimulaçãodeumdadotempobiológico leva2xmaisqueessetempoparasersimulada. Modeloquecombinainformaçãomacroemicroscópica: dadosdeDTI,estruturamicroscópicaeneurôniosque reproduzemdiferentespadrõesdedisparo Esquerda.Propagaçãodeondasno modelo.Disparosdosneurônios excitatórios(inibitórios)indicados porpontosvermelhos(pretos). Direita.Sensibilidadeàadiçãodeum únicodisparo. Izhikevich&Edelman,2008 Modelosparaestruturasnãocor/cais: girodenteadodohipocampo • • • • • Modeloestruturalemescala1:1dogirodenteado(GD)dorato(~1milhãodeneurônios) Modelofuncionalemescala20:1doGDcommaisde50.000modelosdeneurônios compar/mentaisreduzidos Usadoparaavaliaroefeitodediferentesníveisdeescleroseneuralsobreaexcitabilidadedo GD GDnormaltemestruturademundopequeno(baixoLealtoC) Aescleroseaumentaascaracterís/casdemundopequenodarede(LdiminuieCaumenta) J Neurophysiol 97: 1566 –1587, 2007. First published November 8, 2006; doi:10.1152/jn.00950.2006. Topological Determinants of Epileptogenesis in Large-Scale Structural and Functional Models of the Dentate Gyrus Derived From Experimental Data Jonas Dyhrfjeld-Johnsen,1,* Vijayalakshmi Santhakumar,1,* Robert J. Morgan,1 Ramon Huerta,2 Lev Tsimring,2 and Ivan Soltesz1 1 Department of Anatomy and Neurobiology, University of California, Irvine; and 2Institute for Nonlinear Science, University of California, San Diego, California Colunas:neurôniopré-sináp/cos Linhas:neurôniospós-sináp/cos Dyhr•eldetal.(2007) www.sisne.org/lascon Latin American School on Computational Neuroscience LASCON NeuroMat Research,Innova/onandDissemina/on CenterforNeuromathema/cs hZp://neuromat.numec.prp.usp.br