CINTIA SCHMITH FÍSICA MODERNA: UMA ABORDAGEM PRÁTICA CANOAS, 2010 2 CINTIA SCHMITH FÍSICA MODERNA: UMA ABORDAGEM PRÁTICA Trabalho de conclusão apresentado para a banca examinadora do curso de Física Licenciatura do Centro Universitário – Unilasalle, como exigência parcial para a obtenção do grau de licenciado em Física. Orientação: Prof.. Me. Anderson Beatrici CANOAS, 2010 3 CINTIA SCHMITH FÍSICA MODERNA: UMA ABORDAGEM PRÁTICA Trabalho de conclusão aprovado como requisito parcial para a obtenção do grau de licenciada em Física pelo Centro Universitário La Salle – Unilasalle. Aprovada pelo avaliador __________________________________ Prof°. Me. Anderson Beatrici 4 Aos meus pais, Julio e Neusa, e aos meus familiares e amigas (os), que foram eternos incentivadores idealização. para minha conquista e 5 AGRADECIMENTOS Agradeço aos meus pais, padrinhos e familiares pelo constante apoio e principalmente a minha mãe, Neusa. As minhas amigas e amigos, que sempre me apoiaram para esta conquista. Em especial: Caroline Briese, Fernanda Novo Machado, Patricia Vianna. Ao professor Anderson Beatrici, orientador desta ilustre monografia, pela compreensão, colaboração, paciência e confiança. A Deus, por ter me imposto este objetivo e de forma direta ou indireta colaborou para a obtenção desta habilitação, e também por ter me garantido a presença de todos citados acima para que hoje eu pudesse agradecê-los. 6 “Mesmo que se compreenda que o significado de um conceito jamais será definido com precisão absoluta, alguns conceitos são parte integrante dos métodos da ciência, pelo fato de representarem, pelo menos por algum tempo, o resultado final do desenvolvimento do pensamento humano desde um passado assaz remoto; eles podem mesmo ter sido herdados e são, qualquer que seja o caso, instrumentos indispensáveis na execução do trabalho científico em nosso tempo.” (Werner Heisenberg) 7 RESUMO O presente trabalho tem como objetivo focar na atividade experimental no aprendizado de Física no Ensino Médio, o qual consiste basicamente em aulas expositivas. De forma que, possa-se inovar a metodologia de ensino, desmistificando a Física Moderna de forma sistemática para um bom rendimento disciplinar. Em evidência a contextualização do módulo de ensino e aprendizagem no âmbito escolar, com ênfase na Física Moderna, na construção de uma câmera de neblina com o objetivo de visualizar os raios cósmicos e partículas elementares. Palavras-chave: neblina/Wilson. Abordagem experimental. Física Nuclear. Câmara de 8 ABSTRACT This paper aims at focusing on experimental activities when learning Physics in High School, since nowadays the classes are basically lectured. Thus, the objective is to provide an innovative teaching method demystifying Modern Physics in a systematic way so that students have a better school performance. Another objective is to contextualize teaching and learning at school, emphasizing Modern Physics in order to build a mist chamber to visualize cosmic rays and elementary particles. Key words: Experimental Approach. Nuclear Physics. Cloud Chamber/Wilson. 9 SUMÁRIO 1 INTRODUÇÃO............................................................................................................................. 10 1.1 Contextualização .................................................................................................................... 11 1.2 Definição Do Problema .......................................................................................................... 11 1.3 Objetivos................................................................................................................................. 11 1.3.1 Geral...................................................................................................................................... 11 1.3.2 Específicos ............................................................................................................................ 12 1.4 Hipótese ................................................................................................................................. 12 1.5 Relevância Do Estudo .......................................................................................................... 12 2 REFERÊNCIA TEÓRICO – PARTE 1 ........................................................................................ 14 2.1 Física Nuclear ......................................................................................................................... 14 2.2 Particular Fundamentais (Elementares) ............................................................................. 16 2.2.1 Átomo..................................................................................................................................... 16 2.2.2 A descoberta do elétron ........................................................................................................ 22 2.2.3 A descoberta do próton....................................................................................................... 22 2.2.4 A descoberta do nêutron ...................................................................................................... 23 2.2.5 A descoberta do Raio X....................................................................................................... 24 3 REFERENCIAL TEÓRICO – PARTE 2..................................................................................... 27 3.1 Câmara De Neblina................................................................................................................. 27 3.1.1 Câmara de neblina simplificada............................................................................................ 28 3.1.1.1 .Montagem para realização de experimento..................................................................... 31 3.1.1.2 Resultados .. .................................................................................................................... 32 3.1.2 Radiação alfa (α)................................................................................................................... 34 3.1.3 Radiação beta (β)................................................................................................................. 35 3.1.4 Radiação gama (γ)............................................................................................................... 35 3.1.5 Premio Nobel ........................................................................................................................ 36 4 METODOLOGIA ......................................................................................................................... 37 4.1 Experimento Em Laboratório.................................................................................................. 37 5 CONCLUSÃO............................................................................................................................... 55 REFERÊNCIAS................................................................................................................................ 57 ANEXO A – Modelos atômicos...................................................................................................... . 60 10 1 INTRODUÇÃO A Física Moderna constitui uma das grandes conquistas da humanidade seja na compreensão da natureza seja na compreensão do próprio ser humano. Não obstante, já ser de conhecimento teórico e prático na formação acadêmica de professores e pesquisadores especialmente na área da Física, sua apresentação e demonstração prática para alunos dos ensinos médio e fundamental, ainda é de difícil adaptação. Em geral equipamentos que propiciam a “visualização” dessas temáticas são por vezes muito complexos e muitíssimos caros. Demonstrações com uso de LEDs, LASERs e outros, são baratos e de fácil montagem mas na compreensão dos fenômenos acabam por ser apenas experimentos belos mas sem conectividade direta com o real efeito que pretendem apresentar, tratando-se assim apenas de uma representação genérica. Contadores tipo “Geiger-Müller” também ficam no campo das luzes e sons indicando a presença de algo ainda invisível. Dentro da Física Nuclear e de Partículas, os experimentos que não são perigosos e demonstram os fenômenos de emissão de radiação, partículas e algumas de suas propriedades, dos experimentos relacionados se destaca a câmara de nuvens (de neblina ou de Wilson). Esse experimento é de construção relativamente fácil, e trás ao aluno uma visão da trajetória de partículas, dando a sensação de realmente se “ver” a partícula transitando. Com alguns aprimoramentos, como inclusão de campos magnéticos ao “redor” da câmara, podemos até observar o comportamento das partículas de forma que oriente com ou sem carga elétrica. Essa variedade, simplicidade e segurança na realização compreende à câmara de Wilson, uma grande vantagem sobre outros experimentos relativos à Física Moderna, especialmente à Física Nuclear. Para tal nesse trabalho discutiremos como esse dispositivo particular pode ser inserido no ensino médio. 11 1.1 Contextualização Tornar claro o fenômeno dos raios cósmicos, emissão de partículas, efeitos de carga elétrica entre outros, através da construção da câmera de neblina, de acordo com o modelo de Charles Wilson, na forma simplificada. 1.2 Definição Do Problema No ensino escolar, nota-se que os estudantes têm dificuldade de aprender ao se deparar com o conteúdo apresentado. Será que a construção deste experimento terá sucesso e tão logo idealizará na compreensão da disciplina de Física para o aprendizado? 1.3 Objetivos A seguir serão descritos os objetivos a serem desenvolvidos no presente estudo. 1.3.1 Geral Construir uma câmera de neblina funcional com materiais simples, para provar mediante raciocínio concludente a existência de partículas elementares e até mesmo dos raios cósmicos. 12 1.3.2 Específicos - Visualização dos raios cósmicos. - Reconhecer a carga das partículas. - Abranger os conceitos Físicos da Física Moderna. - Verificar a exposição dos estudantes perante a diversidade no ensinoaprendizagem. 1.4 Hipótese Quando utilizada outra modalidade de exposição de um conteúdo, a aprendizagem do conhecimento por parte dos estudantes, bem como a percepção da importância do referido conteúdo será mais positivo, ou seja, haverá um melhor aproveitamento do estudo e aprendizagem. 1.5 Relevância Do Estudo Observa-se que no âmbito escolar, alunos do ensino médio têm certo embaraço em compreender alguns conhecimentos. Portanto, se faz necessário associar as aulas teórico-expositivas a aulas práticas para que os alunos possam ter uma melhor compreensão dos fenômenos da natureza e acontecimentos do cotidiano. Através de uma abordagem prática, viabilizar o esclarecimento da Física Moderna. Dessa forma pretende-se que haja uma melhor percepção do conteúdo e gerando uma maior atenção no objeto de estudo, que às vezes não se é percebida pela falta de interesse e maturidade. Possibilitando também um estimulo para que os estudantes possam compreender tal importância do aprendizado de Física e seus conteúdos abordados, assim como cita do PCN: 13 Não se trata de apresentar ao jovem a Física para que ele simplesmente seja informado de sua existência, mas para que esse conhecimento se transforme em uma ferramenta a mais em suas formas de pensar e agir.” (BRASIL, 2007, p.6) 14 2 REFERENCIAL TEÓRICO – PARTE 1 2.1 Física Nuclear É a ciência que estuda o núcleo do átomo. A física nuclear, também conhecida como física de alta energia, desde os primórdios do século XX tem causado muita expectativa para a sociedade, tanto de forma benéfica quanto desfavorável. Dentro desta ciência temos a descoberta dos Raios X, reatores nucleares, dinamite, cura de certos cânceres, vazamentos radioativos, entre outras. Os quais a sociedade deveria saber filtrar as informações antes de julgar qualquer estudo, de consolidar qualquer pré-conceito. Todo o modelo atômico moderno é composto por um núcleo, o qual é constituído de nêutrons e prótons, chamado genericamente de núcleo, imerso numa “nuvem” de elétrons. Nos átomos neutros o número de prótons é sempre igual ao de elétrons. A instabilidade e estabilidade de um núcleo são determinadas pelas forças de atração nuclear (próton-próton, nêutron-nêutron e próton-nêutron) e de repulsão elétrica (próton-próton). Os núcleos “decaem” por instabilidade dessas forças por causas internas e/ou externas. Isso é amplamente reconhecido, pois se transformam em outras estruturas espontaneamente ou por interação de diversas formas de decaimentos. As reações nucleares podem ocorrer por fissão e fusão. A fissão, descoberta em 1938, normalmente ocorre por um “choque” de um nêutron com um núcleo instável, e logo originam-se fragmentos de massas comparáveis a do núcleo original ou de forma espontânea em núcleos instáveis. 15 Figura 1 – Fissão Nuclear Fonte: Carvalho; 2010. Já a fusão se dá pela união de núcleos mais leves (como, por exemplo, o Hidrogénio, o Hélio, o Deutério ou o Trítio) gerando assim novos elementos, com um núcleo maior, mais pesado. Figura 2 – Fusão Nuclear Fonte: Carvalho; Fonseca, 2010 16 2.2 Partículas Fundamentais (Elementares) Há pelo menos 2500 anos os cientistas e filósofos se questionam sobre a constituição do mundo. Não podemos ainda considerar que temos uma resposta definitiva, mas que temos bastantes estudos para tentar dirimir parte desta curiosidade. Estudos mostram que o mundo é constituído de partículas fundamentais (quarks, léptons e bósons). Já Demócrito e Lucious acreditavam que a matéria era constituída por átomos, o qual esta idéia foi aceita desde 400 a.C. até 1804, até que o cientista John Dalton afirmou que qualquer elemento é constituído por átomos. 2.2.1 Átomo Átomo, palavra de origem grega, que significa indivisível. Átomos são considerados partículas indivisíveis, a menor parte da matéria. O núcleo do átomo é constituído de elétrons (carga negativa), prótons (carga positiva) e nêutrons (desprovidos de carga, neutro). O número de prótons é sempre igual ao de elétrons, no núcleo de um átomo, tornando assim o átomo eletricamente neutro. Figura 3 – Átomo Fonte: Lifesciencereality, 2010. 17 As primeiras descobertas do átomo se deram por volta de 400 a.C. , e que competem até os dias de hoje. (Anexo A – modelo atômico). De acordo com Demócrito de Abdera (460-370 a.C.), o átomo era uma matéria constituída por poucas partículas invisíveis, que a forma era de acordo com o átomo envolvido. Se fosse de aço teria formato de ganhos, se fosse de água seriam lisos e escorregadios, e assim por diante. Figura 4 – Demócrito de Abdera Fonte: Freitas, 2010. “Nada existe além de átomos e vazio; tudo mais é opinião.” (Demócrito. p.7.Física moderna, origens clássicas e fundamentos quânticos. Logo John Dalton (1766-1844), descrevia o átomo com as características de uma “bola de bilhar”, pois toda matéria era formada por minúsculas partículas maciças, neutras e indivisíveis. Com número finito de átomos na natureza. Figura 5 – John Dalton Fonte: Wikispaces, 2010 18 “As partículas últimas de todos os corpos homogêneos são perfeitamente semelhantes em peso, forma etc. Em outras palavras, toda partícula de água é como qualquer outra partícula de água; toda partícula de hidrogênio é como qualquer outra partícula de hidrogênio [...].” p.35. Física moderna, origens clássicas e fundamentos quânticos. Segundo Joseph John Thomson (1856-1940), em 1904 idealizou que seu modelo atômico era divisível, de forma esférica, distribuído de carga positiva e negativa, de forma que pela sua quantidade ser por igual, tornava um sistema nulo. Logo, este modelo ficou conhecido como “pudin de passas”. De acordo, com a teoria eletromagnética clássica, partículas em movimento com carga elétrica geram radiação eletromagnética, e o seu modelo também exigia a mesma movimentação com a mesma freqüência a das raias dos espectros atômicos. Mas com esta teoria em questão, não se pode considerar que é um sistema estável, que a interação é de natureza eletromagnética. E nenhum estudo compreende que a configuração do elétron para um átomo, atende as freqüências esperadas. Assim, o modelo de Thomson foi substituído pelo modelo de Rutherford. Figura 6 – Joseph John Thomson Fonte: Wikipedia, 2010. Em 1911, Ernest Rutherford (1871-1937), físico britânico, efetuou muitos experimentos, dentre eles a descoberta de que o átomo é formado por um insignificante núcleo positivo rodeado por uma região abundantemente mais extensa espalhado de carga negativa, ou seja elétrons. O qual o átomo era praticamente 19 composto por vácuo. Com estas interpretações, se nomeou este modelo como “Planetário”. Rutherford realizou a “experiência de dispersão” para obtenção das descobertas sobre a disposição do átomo e dela surgiu seu modelo. Ele bombardeou uma “lâmina” muito fina de ouro com partículas alfa, mas a maioria atravessou esta lâmina, outras mudaram de direção e outras rebateram, logo deduziu que isso acontecia porque o átomo de ouro possui um denso núcleo que bloqueia a passagem de algumas partículas. Mas a experiência de Rutherford também continha falha, pois também pela teoria eletromagnética mencionada anteriormente, uma partícula com carga elétrica acelerada origina uma onda eletromagnética. Logo, o elétron se submete a uma aceleração centrípeta, e emiti uma energia na forma de onda eletromagnética. Então, pelo Principio da Conservação da Energia, o elétron perde energia cinética e potencial, caindo sucessivamente sobre o núcleo, e isto não ocorre na prática. Figura 7 - Experimento de Rutherford Fonte: Brasilescola, 2010 O átomo de Rutherford definia bem a natureza elétrica da matéria. No entanto, não conseguia explicar a existência de espectros descontínuos de emissão. Logo a explicação foi dada por Niels Bohr. 20 Figura 8 – Ernest Rutherford Fonte: Davebruns, 2010 Niels Henrik David Bohr (1885-1962), Físico dinamarquês, assemelhou o modelo do átomo com um sistema solar, em que o núcleo positivo equivalia ao Sol, e o elétron como um planeta ao ser colocado na sua órbita. De forma que enquanto é atraído pela força da gravidade para o Sol, e pela força da eletricidade o elétron era atraído para o núcleo. Em vista de muitas pesquisas, Niels afirma que o elétron existia apenas em certas órbitas, certo disto, contrariava as Leis de Newton e assim Bohr afirmava que o elétron irradiaria ou absorveria energia, quando se movesse das órbitas. Estas órbitas haviam sido definidas por camadas ou níveis, e a cada uma destas atribuída uma letra (K, L, M, N, O, P, Q), reconhecido assim como “O modelo de Bohr”. Figura 9 – Modelo de Bohr Fonte: Silva, 2010. 21 Figura 10 – Niels Bohr Fonte: Webgccunyedu, 2010 O modelo de Bohr foi “modificado” por Arnold Sommerfeld (1868-1951), que reconheceu a existência de órbitas elípticas, que divide os níveis em subníveis, que elimina o declínio do elétron como ocorria no modelo de Bohr, acrescentando assim outros números quânticos. Figura 11 – Arnold Sommerfeld Fonte: Owpdb, 2010. Foi considerado que a matéria era constituída por átomos osciladores, logo que estes átomos são definidos pela matéria no seu estado físico, ou seja, gases. 22 2.2.2 A descoberta do elétron Constatou-se no final do século XIX que os átomos não são indivisíveis. Em 1887, o elétron foi descoberto em uma experiência realizada pelo físico britânico, John Joseph Thomson enquanto estudava os raios catódicos, de que os átomos possuíam estrutura interna. Os raios catódicos, hoje são conhecidos como elétrons, os quais ele identificou de forma que são constituídos de partículas muito menores que o átomo e possuem carga elétrica negativa. No decorrer dos tempos outra idéia de modelo do elétron foi em 1902 pelo Físico alemão Max Abraham, que relatava que o elétron parecia uma esfera rígida com distribuição de carga esfericamente simétrica, e esta idéia foi considerada por muito tempo, até que a Teoria Quântica Relativística descrevesse o elétron. O elétron, do grego elektro. A carga do elétron é de -1,602 ×10-19 C, e a sua massa é de 9,109 ×10-31 kg. 2.2.3 A descoberta do próton Com certa alteração no tubo dos raios catódicos1, Eugene Goldstein em 1886, afirmou o conhecimento de outra partícula, muito mais pesada que o elétron, porém de carga elétrica positiva. Em 1886, Eugen Goldstein, utilizando um cátodo perfurado em ampolas semelhantes à de Crookes, contendo gás a baixa pressão (0,1 mmHg aproximadamente), pôde observar um foco luminoso surgir atrás do cátodo, vindo da direção do ânodo. Goldstein denominou esse fluxo de raios anódicos ou raios canais. Os raios canais possuem carga elétrica positiva. Eles são desviados para a placa negativa na presença de um campo elétrico externo à ampola. De todos os gases empregados nas experiências, o hidrogênio era o que produzia raios canais com a menor massa e o menor desvio no campo elétrico. A essa parte elementar dos raios canais chamou-se próton. 1 Raios catódicos possuem massa, caminham em linha reta, possuem carga negativa 23 Figura 12 – Eugen Goldstein Fonte: Memberschello, 2010 2.2.4 A descoberta do nêutron Partícula elementar, não carregada, que tem massa quase igual a do próton e se encontra em todos os núcleos atômicos conhecidos, com exceção do núcleo de hidrogênio. Em 1932, foi descoberto o nêutron por James Chadwick (1891-1974), pela conservação da quantidade de movimento. Mas doze anos antes Rutherford já tinha previsto essa partícula. Figura 13 – James Chadwick Fonte: Wired, 2010. 24 Num acelerador de partículas subatômicas, a partícula alfa , que é o núcleo do átomo de hélio, com dois prótons e dois nêutrons e número de massa quatro (4), é lançada contra o núcleo do átomo de berílio, com quatro prótons e cinco nêutrons e número de massa nove (9). Na colisão o átomo de berílio adiciona a partícula alfa e transmuta-se no elemento químico carbono, com seis prótons e sete nêutrons, número de massa treze (13) e que por ser instável, elimina um nêutrons e transmuta-se no carbono estável de número de massa doze (12). O nêutron eliminado, ao atravessar um campo elétrico, não sofre desvio, permitindo concluir que o nêutron é uma partícula que não possui carga elétrica, mas que possui massa praticamente igual a do próton” (VIRTUALQUIMICA, 2010) Figura 14 Fonte: Virtualquimica, 2010 2.2.5 A descoberta do Raio X Foi por acaso que Wilhelm Conrad Roentgen (1845-1923), descobriu o Raio X, estudando descargas elétricas em gases menos densos e ampolas de Crookes. 25 Figura 15 – Wilhelm Conrad Roentgen Fonte: Nautilus, 2010. Conforme descreve no site da e-fisica: Ele tinha uma ampola de Crookes encerrada em uma caixa de papelão, e alimentada por uma bobina de Rumkhorff. Com o conjunto em um quarto escuro, ele observou que, quando o tubo funcionava, se produzia fluorescência num cartão pintado com platino-cianureto de bário. A fluorescência era observada quer estivesse voltada para o tubo a face do cartão pintada com platino cianureto de bário, quer a face oposta, e até com este cartão afastado a dois metros do tubo. A fluorescência não era causada pelos raios catódicos, pois estes não atravessam o vidro do tubo. Roentgen observou a seguir que o agente causador da fluorescência se originava na parede do tubo de Crookes, no ponto onde os raios catódicos encontravam essa parede. Não sabendo do que se tratava, Roentgen chamou raio X a esse agente. Raios X são produzidos todas as vezes que elétrons encontram um obstáculo. Na experiência de Roentgen, eles eram produzidos quando os elétrons encontravam a parede do tubo. (EFISICA, 2010). 26 Figura 16 Fonte: Centro de Ensino e Pesquisa Aplicada. Portanto se conclui que a formação do Raio X se origina na forma mencionada que: [...] os elétrons emitidos pelo catodo são fortemente atraídos pelo anodo, e chegam a este com grande energia cinética. Chocando-se com o anodo, eles perdem a energia cinética, e cedem energia aos elétrons que estão nos átomos do anodo. Estes elétrons são então acelerados. E acelerados, emitem ondas eletromagnéticas que são os raios X. (EFISICA, 2010). 27 3 REFERENCIAL TEÓRICO – PARTE 2 3.1 Câmara De Neblina Conhecida também por Câmera de Wilson, pois sua “criação” foi realizada por Charles Thomson Rees Wilson (1869-1959), e considerada hoje como um dos melhores exemplos de captura dos raios cósmicos daquela época. Figura 17 – Charles Thomson Rees Wilson Fonte: Sabersapo., 2010 O princípio da câmara de neblina faz observar a trajetória das partículas emitidas por uma fonte radioativa (exemplo: Urânio, Rádio, Tório e outros). Wilson, que trabalhava como observador meteorológico, e por volta do século XIX começou observar os fenômenos de interação da luz do sol com a neblina. Vejamos como menciona José Maria Bassalo nas “Curiosidades da Física (SEARA)”: [...] Trabalhando no Cavendish Laboratory da Universidade de Cambridge, na Inglaterra, Wilson fez um estudo intensivo da conduta de íons nos gases, já que, como meteorologista, seu principal objeto de trabalho eram as nuvens. Pois bem, tentando duplicar o efeito de certas nuvens em picos de montanhas, ele idealizou uma maneira de expandir ar úmido em recipientes fechados. Observou, então, que a expansão esfriava o ar de modo que ele se tornava supersaturado, e a umidade se condensava sobre partículas de pó. Daí,teve a idéia de que se um feixe de partículas carregadas atravessasse um vapor super-resfriado, este se condensaria em gotículas de líquido em torno daquelas partículas, razão pela qual esse dispositivo 28 passou a ser conhecido como câmara de névoa ou câmara de Wilson. (SEARADACIENCIA, 2010) Figura 17 – Primeira Câmara de Neblinas feita por Wilson Fonte: Lunazzi; Manoel; Shibuya, 2010 3.1.1 Câmara de neblina simplificada A montagem de uma câmara de neblina simplificada explora as origens da Física Moderna, de forma simples com as mesmas teorias utilizadas por Wilson, de modo que podemos então observar a Física das Partículas. Podemos mencionar como exemplo, a forma como foi apresentada por João Paulo Pitelli Manoel (Construção e demonstração do funcionamento de uma câmara de neblinas simplificada. p.7) : Na câmara de neblinas simplificada, é utilizado vapor de álcool, ao invés de vapor d’água, e o estágio de supersaturação desse vapor, é atingido através de um gradiente de temperatura, entre a base e o topo da câmara. O vapor de álcool é liberado por um feltro na parte superior da câmara, que se encontra a temperatura ambiente. A base é constituída de uma placa de cobre, resfriada através de um tubo de cobre, soldado a ela, e imerso em uma garrafa térmica cheia de nitrogênio líquido, ou gelo seco e álcool. Para o gelo seco, uma diferença de temperatura de aproximadamente 75 ºC é estabelecida entre a base e o topo da câmara, enquanto que, para o nitrogênio líquido, a diferença é de aproximadamente 215 ºC. Em ambos os casos, a parte inferior da câmara entra em um estágio de saturação do 29 vapor de álcool, com uma quantidade muito menor do que a que está sendo liberada pelo feltro, que se encontra em uma região com uma temperatura maior (ambiente) e, conseqüentemente, com uma pressão de vapor também maior. Cria-se assim um estágio de supersaturação do vapor de álcool na base da câmara. Logicamente, as partículas de poeira devem ser eliminadas e, para isso, atritasse o plástico que constitui o teto da câmara, com um pano, criando uma diferença de potencial entre a base e o topo da câmara, eliminando em parte as partículas de poeira carregadas, presentes no interior da câmara. Dessa forma, todas as condições criadas por Wilson, originalmente em sua câmara, são atingidas e, traços de partículas ionizantes, podem ser vistos. (LUNAZZI; MANOEL; SHIBUYA, 2010) Deste modo, os rastros que vemos na câmara são originadas das moléculas do álcool, do mesmo modo que as gotículas de água se condensam nas nuvens, por isto a origem também de “câmara de nuvens”. Uma partícula subatômica sai em linha reta ao ser lançada por um material radioativo. Ao atravessar por alguma molécula de álcool ou ar, esta partícula pode despegar um ou mais elétrons, e desta forma acarretando a ionização desta partícula. Os íons formados atraem as moléculas de vapor mais próximas, condensando-as na mesma aparência de gotículas minúsculas. Os quais os rastros destas gotículas que indicam o espalhamento da luz e formam o rastro pelo qual passou a devida partícula subatômica. Figura 18 – Câmara de neblinas simplificada Fonte: Searadaciencia, 2010. 30 Figura 19 – Câmara de neblinas simplificada Fonte: Lunazzi; Manoel; Shibuya, 2010. Figura 20 – Câmara de neblinas simplificada Fonte: Lunazzi; Manoel; Shibuya, 2010. 31 Figura 21 – Câmara de neblinas simplificada Fonte: Lunazzi; Manoel; Shibuya, 2010. Conforme demonstrado nas figuras acima, Wilson conseguiu expor sua câmera as fontes de radiação como Alfa – α (núcleo de Hélio), Beta – β (elétron) e raios-X (fóton). Como fonte de curiosidade, podemos colocar próximo a câmara um forte imã que fará desviar a trajetória das partículas, e com isto é possível descobrir o sinal (+ ou -) da carga da partícula e sua proporção de massa. 3.1.1.1 Montagem para realização do experimento Cortou-se, de forma circular com 6,7cm de diâmetro, uma placa de cobre de 0,5 mm de espessura. Um tubo do mesmo material, com diâmetro de 1,5cm e 12,5 cm de comprimento, foi soldado à placa. 2 O tubo de cobre foi então aquecido na chama de um bico de Bunsen , sendo em seguida, introduzido no centro da base de um recipiente plástico com as seguintes dimensões: 7,4cm de diâmetro, altura de 5,5cm e espessura de 1mm. Perfurou-se, com uma broca, o centro da tampa de uma garrafa térmica de modo que o furo ficasse um pouco menor que o diâmetro do tubo de cobre. Um pequeno orifício, feito também com uma broca, foi feito entre o furo central e a borda da tampa, para servir de escape para os gases liberados dentro da garrafa. O tubo de cobre, já acoplado ao recipiente, foi introduzido no furo central da tampa da garrafa térmica, formando uma só peça: tubo soldado à placa + recipiente plástico + tampa. A tampa da câmara é um plástico quadrado transparente, com 15 cm de lado e 2mm de espessura. O álcool utilizado é o metanol, por ser extremamente volátil. 2 É utilizado nos laboratórios como fonte de calor para diversas finalidades, como: aquecimento de soluções, estiramento e preparo de peças de vidro entre outros. 32 Uma tira de feltro com 1,3 cm de largura e 28 cm de comprimento, é fixada, formando uma volta na parte superior do recipiente plástico. O feltro é embebido com o metanol, com a ajuda de um conta-gotas. Esta tira precisa ser trocada, cada vez que se realiza o experimento (o álcool resseca o feltro). O tubo de cobre, acoplado à tampa e ao recipiente plástico, é então colocado na garrafa térmica, contendo nitrogênio líquido, ou gelo seco e álcool etílico. A tampa de plástico é atritada com um pano, para eliminar as partículas de poeira carregadas, e colocada em cima do recipiente plástico. Após alguns segundos, uma fina camada de neblina já pode ser vista na base da câmara, mostrando que o estágio de supersaturação de vapor foi atingido. Em intervalos de 10 minutos, essa tampa deve ser reeletrizada novamente. Sempre que se perceber uma diminuição da neblina na base da câmara, o feltro deve ser molhado novamente com metanol. A iluminação é feita com uma lâmpada comercial de 50 Watts, com um sistema de espelhos que foca toda a luz numa pequena região. Dessa forma, a intensidade de luz dirigida para dentro da câmara é grande suficiente para tornar os traços deixados pelas partículas, visíveis. O foco de luz é incidido sobre as laterais da câmara, e os traços são visualizados pela parte de cima, através da tampa de plástico. Apenas a parte inferior da câmara necessita de iluminação, já que o estágio de supersaturação, é atingido numa camada muito fina na base do recipiente plástico.” (LUNAZZI; MANOEL; SHIBUYA, 2010). Figura 22 – Câmara de neblinas simplificada Fonte: Lunazzi; Manoel; Shibuya, 2010. 3.1.1.2 Resultados Para que houvesse o menor risco à saúde possível, foi utilizado como fonte de partículas α, a areia da praia de Guarapari - ES. Ela tem como principal elemento radioativo o Tório-232, que por se apresentar em pequena quantidade na areia, oferece pouco risco para quem o manuseia. Uma quantidade muito menor, do elemento Urânio-235, também está presente. Segundo cálculos do Dr. Pedro Lunes, do Departamento de Raios Cósmicos e Cronologia (DFCC, Instituto de Física Gleb Wathagin - Universidade Estadual de Campinas), o Tório presente na areia se encontra em mais de 95% do seu equilíbrio secular. Pode-se então considerar que todos os canais de decaimento estão com mesma atividade. Partículas alfa com energias entre 3,834 Mev e 8,784 Mev, são detectadas pela câmara. 33 A energia da partícula alfa determina seu alcance no ar, ou seja, a distância percorrida por ela, antes de ser absorvida. Analisando-se a curva de Bethe , vê-se que, partículas com alcance entre 2,4 cm e 9,0 cm são emitidas pelo Tório. A temperatura do ar para o gráfico do apêndice 1 é de 15 º C, enquanto que a parte inferior da câmara, se encontra a uma temperatura de - 56,5ºC quando se utiliza gelo seco e -196ºC, quando se utiliza nitrogênio líquido. Assim, uma correção da forma [3]: onde R representa o alcance (range) da partícula, deve ser feita. As montagens, com gelo seco e com nitrogênio líquido, apresentaram resultados muito semelhantes. O gelo seco, porém, se mostrou mais vantajoso por dois motivos: os traços deixados pelas partículas são mais espessos; e o tempo de funcionamento da câmara é maior, sendo necessário apenas, reeletrizar a tampa de plástico em intervalos de 10 minutos. A espessura dos traços é maior na montagem com gelo seco, devido a maior energia cinética das moléculas de álcool, que, se encontram em uma temperatura maior que na montagem com o nitrogênio. Isso faz com que mais moléculas entrem em contato com os íons deixados pelas partículas, na passagem pela câmara, aumentando o grau de condensação nos traços de íons. O tempo de funcionamento da câmara, também é maior, porque não há congelamento de água (umidade do ar), na placa de cobre. Para o nitrogênio, em poucos minutos, isso ocorre, tornando a placa branca, dificultando a visão dos traços. Além disso, o nitrogênio líquido libera uma maior quantidade de gases, que penetram na câmara e, depois de algum tempo, impedem que qualquer traço seja visto. Usando a montagem com gelo seco, os traços são observados com muita facilidade e se assemelham muito com os que foram vistos por Wilson já que são densos e espessos, típicos de partículas alfa. A camada de supersaturação do vapor de álcool se encontra na parte inferior da câmara, muito rente à placa de cobre. Com a montagem usando gelo seco, a câmara foi exposta ao ar livre. Traços de partículas cósmicas não puderam ser vistos, já que, por virem praticamente na vertical, os traços se formariam, perpendicularmente à camada de vapor supersaturado na base da câmara. Por essa camada não ultrapassar 0,5 cm, nenhum traço pôde ser visto, mesmo quando olhou-se pela lateral do recipiente plástico. Porém, olhando-se por cima, puderam ser vistos diversos pontos de condensação, que se formavam de repente, e sumiam num curto espaço de tempo. Provavelmente, esses pontos foram formados, por partículas cósmicas (elétrons), que, penetraram na câmara, e causaram um traço na fina camada de vapor supersaturado. Logicamente, somente os pontos por onde entraram essas partículas puderam ser vistos. Mesmo sem fonte radioativa na câmara, muitos traços puderam ser vistos. Inclusive traços muito parecidos com os da figura 2 b), gerados por elétrons. Isto mostra que mesmo sem nenhuma fonte de partículas ionizantes por perto, moléculas de ar podem se ionizar, liberando elétrons, que deixam seus traços na câmara. Essa ionização pode ser devido à colisão de uma molécula de ar com um raio cósmico, ou mesmo, com outras moléculas de ar. Logo, um estudo mais detalhado sobre raios cósmicos, com essa câmara, se torna inviável, sendo necessário uma câmara que atinja uma camada maior de supersaturação de vapor e que tenha uma diferença de potencial aplicada entre a base e o topo da câmara, acabando com as possíveis descargas elétricas que podem ser geradas espontaneamente no ar. Com a câmara exposta à fonte de Tório, traços muito bem definidos puderam ser vistos. As direções de emissão das partículas alfa também 34 puderam ser identificadas. A grande maioria dos traços foram absorvidos dentro da câmara, comprovando as previsões dadas pela equação 5. Devido à fina camada de supersaturação, atingida com a câmara, um estudo mais aprofundado dos raios cósmicos não pôde ser feito. Outros materiais, porém, podem ser testados, a fim de atingir uma camada maior de supersaturação do vapor de metanol, desde que mantenham os princípios exigidos para o funcionamento da câmara.” (LUNAZZI; MANOEL; SHIBUYA, 2010). 3.1.2 Radiação Alfa (α) São partículas carregas por dois prótons e dois nêutrons, possui carga positiva +2e, e massa 4. Figura 23 – Radiação Alfa Fonte: Fisica.net, 2010. 35 Figura 24 – Radiação Alfa Fonte: Nasaimages, 2010 Nesta foto as partículas alfa provém de uma fonte de polônio que emite em um padrão muito parecido com uma flor, no centro da câmara de nuvens. As partículas ficam visíveis por meio de difusão de vapor de álcool que difunde o de uma área em temperatura ambiente para outra em -78 C. (NASAIMAGES, 2010) 3.1.3 Radiação Beta (β) São partículas negativas (elétrons), possui carga negativa -1e, e massa cerca de 2000 vezes menor que a massa do próton. A radiação beta pode ser positiva também (beta +) quando um pósitron (antipartícula do elétron) for emitido. 3.1.4 Radiação Gama (γ) 36 É um exemplo de radiação eletromagnética originada em geral das transições de níveis nucleares que ocorrem naturalmente nos elementos radioativos. Possuem cargas e massas nulas. Os raios gama são produzidos na passagem de um núcleon de um nível excitado para outro de menor energia e, na desintegração de isótopos radioativos. Estão geralmente associados com a energia nuclear e aos reatores nucleares. A radiação gama é amplamente utilizada na medicina nuclear no tratamento de enfermidades como o câncer em um processo denominado tele terapia, onde o paciente é exposto a uma fonte radioativa emissora gama sem que haja contato físico com a tal fonte por um tempo pré determinado. É utilizado também em cirurgias sem corte para eliminação de tumores intracranianos que é feita por um aparelho denominado faca gama. Sua aplicação mais conhecida é a Tomografia por Emissão de Pósitrons (ou positrões em Português de Portugal) (PET), onde a emissão gama é direcionada em vários feixes gama em direção a detectores que posteriormente remontam fatia a fatia toda a estrutura corpórea a ser analisada. (WIKIPÉDIA, 2010) 3.1.5 Premio Nobel Em 1927, Charles Thomson Rees Wilson, ganhou o Nobel de Física pela sua Câmara de Neblina (ou conhecida também como câmara de Wilson), pois por este experimento tornou-se possível a observação da trajetória das partículas através da condensação do vapor da água. 37 4 METODOLOGIA 4.1 Experimento em Laboratório Com base nos referenciais teóricos citados e estudados nesta pesquisa, realizamos a montagem da “câmara de neblina simplificada”, no laboratório de Física do Centro Universitário La Salle. Abaixo segue os passos para este experimento: Materiais: - recipiente de vidro / acrílico; - retalho de esponja ou feltro; - gelo seco; - álcool isopropílico; - fonte de luz (ex.: lanterna); - fonte radioativa (camisa de lampião, detectores de fumaça, etc.); - multímetro (usado como termômetro de baixas temperaturas); - imã. Passos para montagem: 1º) colar a esponja no fundo do recipiente, e embeber a esponja com álcool isopropílico; 2º) colocar a fonte radioativa dentro do recipiente, e de preferência fixá-la; 3º) fechar o recipiente de forma que fique o mais vedado possível; 4º) manter a parte inferior (abaixo da tampa) a temperatura mais baixa possível. Importante que a temperatura atinja no mínimo -57 °C na base do recipiente; 5º) escurecer o local onde está sendo realizado o experimento, e logo focar a luz ao recipiente, de modo que fique visível a neblina; 6º) deixar a neblina se manter constante e, aguardar o “show” começar, os rastros dos raios, partículas, aparecerem! 38 Figura 25 – Fonte: Foto de montagem do experimento em 01/07/10 – Câmara de Neblina. Fonte: Laboratório de Física Unilasalle, 2010. Figura 26 – Foto de montagem do experimento em 01/07/10. Temperatura atingida no recipiente de vidro (-57 °C) Fonte: Laboratório de Física Unilasalle, 2010. Com esta simples montagem, conforme demonstra a figura acima que fotografamos durante o experimento, é possível se notar a praticidade para esta montagem, deferindo que foram utilizados materiais dos quais são de fácil acesso, do nosso dia-a-dia, até mesmo o material radioativo. A fonte radioativa pode ser encontrada em camisas de lampião, alguns detectores de fumaça, entre outros. Precisamos levar em consideração que se foi necessário realizar várias tentativas até chegar ao nosso ponto de êxito, a visualização do rastro das partículas. Pois muitos argumentos na realização deste influenciam: a temperatura que o recipiente deve se manter, a umidade do ar, o tipo de álcool utilizado, a quantidade de álcool necessária, etc. Portanto, não se recomenda realizar este experimento em sala de aula sem sequer ter sido previamente realizado 39 anteriormente, pois apesar da facilidade não é tão simples chegar ao ponto de neblina e até mesmo acertar o ponto de visualização das partículas. Se for realizado no âmbito escolar, é importante considerar que seja em grupos pequenos, de no máximo quatro (4) alunos, por se tratar de uma visualização rápida e numa área de observação não muito ampla. Os rastros “passam” muito rápidos, por isso é importante ficar atento. Conseguimos realizar a filmagem destes durante o experimento, e conseguimos fotografar o fenômeno. É muito importante que se tenha esse material prévio disponível em sala de aula para mostrar aos alunos o que devem procurar visualizar evitando assim que observem apenas o movimenta da névoa ao um reflexo qualquer. Esse material filmado ou fotografado, também serve como eventual substituto em caso de falha na execução do experimento em sala de aula. Vejamos a sequência das partículas observadas nas imagens deste experimento (não sabemos que tipo de partícula se refere - (alfa (α), beta (β), gama (γ) - pois necessitaríamos de um estudo mais abrangente para essa determinação). - 1º rastro de uma partícula: 40 41 42 - 2º rastro de uma partícula: 43 44 45 46 47 48 - 3º rastro de uma partícula: 49 50 51 - 4º rastro de uma partícula: 52 53 54 Nesse último rastro percebe-se que a partícula colidiu com uma molécula mais pesada e sofreu uma deflexão em sua trajetória. 55 5 CONCLUSÃO Pode-se concluir que com aceitação do aluno, é possível introduzir atividades extras para inclusão do aprendizado. Caberá sempre ao professor, dentro das condições específicas nas quais desenvolve seu trabalho, em função do perfil de sua escola e do projeto pedagógico em andamento, selecionar, priorizar, redefinir e organizar os objetivos em torno dos quais faz mais sentido trabalhar. (BRASIL, 2007, p.62) Considerando o experimento articulado neste, como possibilidade de diversidade de aula, podemos verificar que a qualificação de aprendizagem e interesse dos alunos é proveitosa, tratando assim que a possibilidade do bom entendimento da matéria seja de maneira exposta e visual. Este experimento teve como benefício para orientação na introdução da Física Moderna no Ensino Médio, com a garantia de lhes demonstrar o mundo que existe e que não percebemos no nosso dia a dia, mas que compreende o nosso mundo, a formação da matéria. Eis que cita nas Orientações Educacionais Complementares aos Parâmetros Curriculares Nacionais, (BRASIL, 2007, p. 70), Ciências da Natureza, Matemática e suas Tecnologias: Alguns aspectos da chamada Física Moderna serão indispensáveis para permitir aos jovens adquirir uma compreensão mais abrangente sobre como se constitui a matéria, de forma que tenham contato com diferentes e novos materiais, cristais líquidos e lasers presentes nos utensílios tecnológicos, ou co desenvolvimento da eletrônica, dos circuitos integrados e dos microprocessadores. A compreensão dos modelos para a constituição da matéria deve, ainda, incluir as interações no núcleo dos átomos e os modelos que a ciência hoje propõe para um mundo povoado de partículas. Mas será também indispensável ir mais além, aprendendo a identificar, lidar e reconhecer as radiações e seus diferentes usos. Ou seja, o estudo de matéria e radiação indica um tema capaz de organizar as competências relacionadas à compreensão do mundo material microscópico. Então, levando em consideração este princípio, motivamos com este experimento da Câmara de Neblina, a acuidade de compreender e visualizar as partículas, possibilitando ao educando observar e reconhecer as radiações. Portanto, os alunos podem perceber os conceitos Físicos de uma forma mais simplificada, mantendo sempre o conceito a ser estudado. 56 Prove-se também que a percepção para este aprendizado por parte dos alunos é conceituosa. Pois a partir de uma demonstração simples foi possível observar com muita proximidade as partículas estudadas no Ensino Médio. Além disso, o educando percebe que o experimento é de fácil construção, pois foi realizado de materiais dos quais temos contato diariamente, e assim também elimina o medo da curiosidade, demonstrando que com coisas muito simples é possível se obter grandes e curiosos resultados como obtivemos neste. 57 REFERÊNCIAS ABNT. Normas ABNT. Disponível em http://www.monografia.net/abnt/index.htm Acesso em 05/07/2010 ALVES, Líria. O átomo de Rutherford. Disponível em: <http://www.brasilescola.com >. Acesso em 01/06/10 BASE de dados de figuras. Disponível em: < http://nautilus.fis.uc.pt/wwwqui/ >. Acesso em 08/06/10 BRASIL. Orientações Educanionais Complementares aos Parâmentros Curriculares Nacionais. 2007. Disponível em: < http://portal.mec.gov.br/mec/index.htm >. Acesso em 10/01/10 CARUSO, Francisco. Física Moderna: origem clássicas e fundamentos Quânticos. Rio de Janeiro: Elsevier: Campus, 2006. COPENHAGEN. Disponível em: < http://www.newmedialab.cuny.edu/ >. Acesso em 29/05/10 DEFINIÇÃO de átomo. Disponível em: <http://www.escolainterativa.com.br/principal.asp >. Acesso em 01/06/10 Davebruns. 2010. Disponível em: < http://www.davebruns.com/rutherford1L.jpg >. Acesso em 29/05/10 DESCOBERTA das partículas sub-atômicas. Disponível em: < http://www.virtualquimica.hpg.com.br/ >. Acesso em 01/06/10 EXPERIMENTOS com raios cósmicos. Disponível em: < http://eppog.web.cern.ch/eppog/default.html >. Acesso em 05/05/10 Feb.27,1932: Neutron Discovered; A-Bomb on the way. Disponível em: < http://www.wired.com/ >. Acesso em 01/06/10 Feiradeciencias. Disponível em: < http://www.feiradeciencias.com.br >. Acessado em 05/05/2010 58 FERRAZ NETTO, Luiz. Laboratório de Física: Sala 20. Disponível em: < Efisica. Disponível em: http://efisica.if.usp.br/ >. Acesso em 01/06/10 JACOBS, Konrad. Oberwolfach Photo Collection. Disponível em: <http://owpdb.mfo.de/ >. Acesso em 29/05/10 KEMP, Ernesto. Radiação: Interação e Detecção. Disponível em: < LUNAZZI, Jose Joaquim; MANOEL, João Paulo Pitelli ; SHIBUYA, Edison Hiroyuki. F-809 Instrumentação Para o Ensino. Disponível em: < http://www.ifi.unicamp.br >. Acesso em 25/01/10. MATÉRIA e energia. Disponível em: < http://www.fcf.usp.br/ >. Acesso em 01/06/10 Nasaimagens. Disponível em: <http://www.nasaimages.org/luna/servlet/detail/nasaNAS~5~5~21867~126580:NAC A-Physicist-Studying-Alpha-Rays> . Acesso em 25/05/10 POLÔNIO em aviões nucleares. Disponível em: < http://imagens.tabelaperiodica.org/ >. Acesso em 25/05/10 REICH-CHEMISTRY. Disponível em: < http://reich-chemistry.wikispaces.com >. Acesso em 29/05/10 Sabersapo. 2010. Disponível em: <http://saber.sapo.ao> SILVA, Gustavo Mosquetti. A evolução dos modelos atômicos. Disponível em: < http://enciclopediavirtual.vilabol.uol.com.br/ >. Acesso em 01/06/10 STUFF made of stuff that never touches. 2010. Disponível em: < http://lifesciencereality.wordpress.com/ >. Acesso em 01/06/10 TEORIA atômica. 2010. Disponível em: < http://quimicacoma2108.blogspot.com/ >. Acesso em 29/05/10 THE CATHODE Ray Tube. 2010. Disponível em: < http://members.upc.nl/h.dijkstra19/ >. Acesso em 01/06/10 TIPLER, Paulo Allen. Física Moderna. Rio de Janeiro: LTC, 2006. 59 Tipos de radiação. Disponível em: < http://www.fisica.net/denis/ >. Acesso em 13/06/10. Webgc. Disponível em: <http://web.gc.cuny.edu/ashp/nml/copenhagen/Bohr.jpg> Acesso em 01/06/10 Wikipedia. Disponível em: <http://pt.wikipedia.org/>. Acesso em 13/06/10. XAVIER JUNIOR, Ademir L. . Vendo o invisível. Disponível em: <http://aeradoespirito2.sites.uol.com.br/Artigos/VENDO_O_INVISIVEL_3_AX.html>. Acesso em 28/05/10. YOUNG, Hugh D. Sears e Zemansky: Física. São Paulo: Pearson Addison Wesley, 2004. 60 ANEXO A – Modelos atômicos Fonte:http://www.ensinoaberto.unicamp.br/portalea/index_html?foco=HTML/disciplinas/ comuns&sigla=F_550&turma=A&ano=2007&recurso=material&cod_xml=F_550_287159#14 Acesso em 28/05/10