1ª Prova de Termodinâmica

Propaganda
Prova Substitutiva de Termodinâmica – FMT0159
02/julho/2008 – diurno
1)
Propriedades da água:
(1.a) (0,75) O que ocorre com o coeficiente de dilatação térmica da água, abaixo de
4ºC? Que conseqüências isto trás quando congelamos a água? (Dê um exemplo
na natureza e outro doméstico)
(1.b) (0,75) O ponto triplo da água ocorre a 0,16º C enquanto o ponto de
congelamento da água a 1 atm é a 0º C. Qual destas temperaturas é mais indicada
para calibração de um termômetro? Porque?
2)
(2,0) Uma estrutura de aço (=11x10-6 K-1) em formato de U sustenta uma
placa de vidro (=3,2x10-6 K-1) apoiada horizontalmente sobre os dois pilares deste
U. Um dos lados da placa está fixo a um dos pilares, enquanto o outro pode deslizar
livremente sobre o pilar seguinte, para evitar que o vidro venha a se quebrar devido
a eventuais tensões provocadas por dilatação térmica diferencial entre ele e a
estrutura de aço. Este conjunto está exposto a temperaturas entre –20º C e 50º C.
Na temperatura intermediária entre estes dois valores, a placa de vidro mede 4,000
m. Qual deve ser a borda mínima da coluna onde o vidro se apóia livremente para
que ele não venha a cair em função das temperaturas a que o conjunto pode ficar
exposto?
3)
4) Um mol de um gás ideal (=1,4) está inicialmente na pressão de 1 atm e na
temperatura de 0º C. O gás é aquecido isocoricamente até 150º C e depois é
expandido adiabaticamente até a pressão ser novamente 1 atm. Finalmente, é
resfriado isobaricamente até atingir o estado inicial.
(3.a) (1,5) Faça um esquema deste ciclo no diagrama PV, indicando pressões e
volumes em atm e L e temperaturas em K para cada vértice do ciclo.
(3.b) (1,0) Determine o calor trocado pelo sistema durante cada processo.
(3.c) (1,0) Compare o rendimento deste ciclo com o de um ciclo de Carnot que
operasse entre as temperaturas extremas deste ciclo.
4)
(3,0) Um litro de água, inicialmente a 100º C, e a 1 atm, é totalmente
vaporizado em duas situações:
(4.a) Em contato com um reservatório térmico a 100º C.
(4.b) Em contato com um reservatório térmico a 200º C.
(I)
(II)
(III)
Calcule a variação da entropia da água devido à sua vaporização. Há diferença
se isso ocorre em (4.a) ou (4.b)?
Calcule a variação da entropia do reservatório em (4.a) e (4.b).
Calcule a variação de entropia do universo em cada caso e avalie qual deles
poderia ser reversível.
 dQ 
Cp  

 dT  P
Formulário:
1 mol de gás ideal a TPN = 22,4 L
TPN – temperatura e pressão normais
 dQ 
CV  

 dT V
(0º C e 1 atm)
CP - CV = nR
  1
Qf
  1
Tf
S  
dQ
T
CV (monoatômico) = 3/2 nR
Cv (diatômico) = 5/2 nR
CP
CV
 
dQ = dU + dW

PV  cte
TV  1  cte
PV = nRT
dU = CV dT
dW = pdV
1 atm = 101,3 kPa
R = 8,314 J/(mol.K)
cH2O = 4,18 kJ/(kg.K)
Lf(H2O) = 333,5 kJ/kg
Le(H2O) = 2257 kJ/kg
1 cal = 4,184 J
NA = 6,02 x 1023 moléculas/mol
Qq
Tq
l = lo +loT
Q = mcT
Download