CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos na aula de hoje? Ângulos opostos pelo vértice Propriedades dos polígonos Congruência de triângulos Semelhança de triângulos CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Ângulos opostos pelo vértice Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção Apresentação Na geometria plana vamos nos atentar ao método de cálculo da área das figuras geométricas planas. Sendo elas os polígonos, ou seja, figura com muitos ângulos. Ângulos opostos pelo vértice Observe o desenho abaixo, de dois ângulos opostos pelo vértice (opv): 𝒂 𝒃 𝒂 e 𝒃 são ângulos opv (opostos pelo vértice). Vamos comprovar se são ângulos opv. Ângulos opostos pelo vértice Demonstração: Queremos demonstrar que a = b, em que 𝒂 é a medida de a e 𝒃 é a medida de b. 𝒙 𝒂 𝒃 Vemos que a + x = 180° e b + x = 180°. Assim: a+x=b+xa+x–x=b+x–xa=b Sendo assim dois ângulos opostos pelo vértice são sempre congruentes. Retas paralelas cortadas por uma reta transversal As retas r e s são paralelas: estão no mesmo plano e não têm ponto comum (r // s). t r 𝒂 𝒃 𝒄 𝒅 s 𝒆 𝒉 𝒇 𝒈 A reta transversal t forma 4 ângulos com r e 4 ângulos com s. Retas paralelas cortadas por uma reta transversal Analisando a imagem abaixo, vemos que: t r 𝒂 𝒃 𝒄 𝒅 s o 𝒂e𝒆 𝒃e𝒇 𝒄e𝒈 𝒅e𝒉 𝒆 𝒉 Ângulos correspondentes a = e; b = f; c = g; d = h 𝒇 𝒈 Retas paralelas cortadas por uma reta transversal Analisando a imagem, vemos que: o 𝒄e𝒆 𝒅e𝒇 Ângulos alternos internos c = e; d = f o 𝒂e𝒈 𝒃e𝒉 Ângulos alternos externos a = g; b = h o 𝒂e𝒉 𝒃e𝒈 Ângulos colaterais externos a + h = 180°; b + g = 180° o 𝒄e𝒇 𝒅e𝒆 Ângulos colaterais internos c + f = 180°; d + e = 180° Exercício 1 Considere m e n retas paralelas (m // n), calcule o valor de x e a medida de cada ângulo assinalado. n m x + 30° 2x + 10° Exercício 1 (Resolução) Analisaremos assim: n m x + 30° 2x + 10° 𝑦 Como x + 30° é o ângulo opv de 𝑦, então 𝑦 = x + 30° e o ângulo correspondente de 𝑦 é 2x + 10°, assim x + 30° = 2x + 10° x + 30° = 2x + 10° x – 2x = 10° - 30° 50° -x = -20° x = 20° 50° m n Exercício 2 Na figura a seguir, a e b são retas paralelas cortadas pela transversal r. Calcule as medidas de x e y sabendo que a diferença entre elas é 64°. a r b y x Exercício 2 (Resolução) Como x e y são ângulos colaterais externos, ou seja, x + y = 180°, e pelo enunciado x – y = 64°, teremos um sistema: x – y = 64° x = 64° + y x + y = 180° x + y = 180° 64° + y + y = 180° 2y = 180° - 64° 2y = 116° y = 58° Agora é só utilizar o valor de y em algumas das equações, para obter x. x + 58° = 180° x = 180° - 58° x = 122° Propriedade dos polígonos Polígono é uma figura fechada formada por segmentos de retas, que constituem os lados da figura. O encontro dos segmentos formam os vértices, os ângulos internos e os ângulos externos. O polígono possui lados, vértices, diagonais, ângulos internos e ângulos externos. A nomenclatura de um polígono depende do número de lados da figura. Nomenclatura do polígonos A tabela abaixo contém a nomenclatura de alguns polígonos. Lados Nome Lados Nome 1 11 undecágono 2 12 dodecágono Lados Nome ... ... 3 triângulo 13 tridecágono 30 triacontágono 4 quadrilátero 14 tetradecágono 40 tetracontágono 5 pentágono 15 pentadecágono 50 pentacontágono 6 hexágono 16 hexadecágono 60 hexacontágono 7 heptágono 17 heptadecágono 70 heptacontágono 8 octógono 18 octodecágono 80 octacontágono 9 eneágono 19 eneadecágono 90 eneacontágono 10 decágono 20 icoságono 100 hectágono Polígonos regulares Todo polígono regular possui os lados e os ângulos com medidas iguais. Alguns exemplos de polígonos regulares. 90° 108° 90° 108° 90° 90° 108° 120° 120° 60° 108° 108° 120° 60° 120° 60° 120° 120° Polígono Convexo Um polígono é convexo se os ângulos do polígono forem menores que 180°, assim ele será convexo. Ângulos menores que 180° Caso tenha um ângulo com medida maior que 180° ele será classificado como não convexo ou côncavo. Ângulo maior que 180° Ângulos internos de um polígono Em um polígono convexo de n lados, a soma das medidas dos ângulos internos(Si) é igual a (n - 2) . 180°. Assim, teremos a fórmula: Si = (n - 2) . 180° Exercício 4 Qual o valor de x nesta figura? 160° 95° x Exercício 4 (Resolução) Pela imagem, vemos que o polígono tem 5 lados, utilizaremos desse valor na fórmula para obter a soma dos ângulos internos desse polígono. Si = (5 - 2) . 180° Si = 3 . 180° Si = 540° Agora, vamos nomear o ângulo interno próximo de x de y. 90° + 90° + 160° + 95° + y = 540° 160° 435° + y = 540° 95° y = 540° - 435° y = 105° y x Exercício 4 (Resolução) Como y + x = 180°, temos: 125° + x = 180° x = 180° - 105° x = 75° 105° UNIVERSIDADE FEDERAL DE ALAGOAS x 21 Ângulos internos de polígonos regulares Para sabermos qual a medida de cada ângulo interno de um polígono regular basta saber a soma dos ângulos internos (Si) e o número de lados (n). Em seguida, fazer o quociente entre eles. Si 𝒏 Ângulos externos de um polígono convexo Um ângulo externo de um polígono convexo é formado pelo prolongamento de um dos lados do polígono. O ângulo indicado pela sua medida d é um ângulo externo do triângulo ABC. A soma das medidas dos ângulos externos de qualquer polígono convexo(Se) é igual a 360°. Ângulos externos de um polígono regular Para sabermos a medida de cada ângulo externo de um polígono regular basta fazer o quociente entre a soma dos ângulos externos (Se) e o número de lados (n). S𝒆 𝒏 = 360° 𝒏 Diagonais Denominamos por diagonal o segmento de reta que une um vértice ao outro. O número de diagonais de um polígono é proporcional ao número de lados. Para cálculos envolvendo o número de diagonais, utilizamos a seguinte fórmula: 𝒏 . (𝒏 − 𝟑) d= 𝟐 Quadriláteros Paralelogramo Trapézio Losango Retângulo Quadrado Triângulo 𝐴𝐺 𝐵𝐺 𝐶𝐺 = = =2 𝐺𝐷 𝐺𝐹 𝐺𝐸 Baricentro Ortocentro Circuncentro Incentro Exercício 3 (UNESP) Considere as seguintes proposições: - todo quadrado é um losango; - todo quadrado é um retângulo; - todo retângulo é um paralelogramo; - todo triângulo equilátero é isósceles. Pode-se afirmar que: a) só uma é verdadeira. b) todas são verdadeiras. c) só uma é falsa. d) duas são verdadeiras e duas são falsas. e) todas são falsas. CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Congruência de Triângulos Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção Congruência de Triângulos Imagine duas figuras tal que seja possível transportar uma sobre a outra de modo que coincidam. Dizemos que essas figuras são congruentes. Ou seja, duas figuras planas são chamadas congruentes quando possuem forma, dimensões, e ângulos iguais. Nesta aula veremos o caso da congruência de triângulos. Exemplo 1 Pela definição citada anteriormente, observamos que os triângulos ABC e DEF, abaixo, são congruentes. Congruência de Triângulos Para indicar que dois triângulos são congruentes, como no Exemplo 1, utilizamos a seguinte notação: ΔABC ΔDEF Onde, A, B e C são os vértices correspondentes aos vértices D, E e F, respectivamente. Lados Ângulos AB DE AC DF Â D̂ B̂ Ê CB FE Ĉ F̂ Congruência de Triângulos Notamos que a congruência dos seis elementos (três lados e três ângulos) determina a congruência entre dois triângulos. Esta congruência também pode ser indicada da seguinte forma: A B D C E UNIVERSIDADE FEDERAL DE ALAGOAS F 33 Casos de Congruência Para identificar se dois triângulos são congruentes, não é necessário verificar a congruência dos seis elementos. Veremos 5 casos em que a congruência de três elementos garante a congruência destes triângulos. Casos de Congruência • 1º caso - LAL (lado, ângulo, lado): dois lados congruentes e o ângulo formado por esses lados também congruente. Casos de Congruência • 2º caso - LLL (lado, lado, lado): três lados congruentes. Casos de Congruência • 3º caso - ALA (ângulo, lado, ângulo): dois ângulos iguais e o lado entre os ângulos congruente. X Y V T Casos de Congruência • 4º caso - LAA (lado, ângulo, ângulo): um lado congruente, e as congruências do ângulo adjacente e do ângulo oposto a esse lado. S Q Z L Casos de Congruência • 5º caso: Se dois triângulos retângulos têm congruentes um cateto e a hipotenusa, então eles são congruentes. U , , S H V Congruência de triângulos Portanto, através das definições de congruência de triângulos podemos chegar às propriedades geométricas sem a necessidade de efetuar medidas. Chamamos esse método de raciocínio de demonstração. CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Semelhança de Triângulos Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção Semelhança de triângulos Dois triângulos são semelhantes quando satisfazem ao mesmo tempo às duas condições: • os lados correspondentes têm medidas proporcionais; • os ângulos correspondentes são congruentes. Semelhança de triângulos Propriedade fundamental da semelhança de triângulos Se traçamos um segmento paralelo a qualquer um dos lados de um triângulo e ficar determinado um outro triângulo, este será semelhante ao primeiro. O próximo exemplo mostra os triângulos ∆ABC e ∆ADE, que atendem a propriedade citada acima. Note que seus lados são correspondentes. Exemplo 2 Critérios de semelhança • 1° Critério - AAA (ângulo/ ângulo/ ângulo): Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes de outro triângulo, então os triângulos são semelhantes. Critérios de semelhança • 2° Critério - LAL (lado/ângulo/lado): Se as medidas de dois dos lados de dois triângulos são respectivamente proporcionais, e os ângulos determinados por estes lados são congruentes, então os triângulos são semelhantes. Critérios de semelhança • 3° Critério - AA (ângulo/ângulo): Se dois triângulos têm dois ângulos internos correspondentes congruentes, então os triângulos são semelhantes. Critérios de semelhança • 4° Critério - LLL (lado/lado/lado): Se as medidas dos lados de dois triângulos são respectivamente proporcionais, então os triângulos são semelhantes. Exercício 5 Um edifício iluminado pelos raios solares projeta uma sombra de comprimento 72m. Simultaneamente, uma estaca vertical de 2,5m de altura, colocada ao lado do edifício, projeta uma sombra de comprimento 3m. Qual a Altura do edifício? Exercício 5 (Resolução) SITUAÇÃO Exercício 5 (Resolução) Obrigada pela atenção! www.ufal.edu.br www.facebook.com/PETEngenharias www.petengenharias.com.br