LISTA DE EXERCÍCIOS Nº 2 1. Não é possível ver corpos muito pequenos, tais como vírus, utilizando um microscópio de luz comum. Um microscópio eletrônico pode ver tais corpos utilizando um feixe de elétrons em vez de um feixe de luz. A microscopia eletrônica tem-se mostrado inestimável nas investigações de vírus, membranas de células e estruturas subcelulares, superfícies bacterianas, receptores visuais, cloroplastos, e as propriedades contráteis dos músculos. As “lentes” de um microscópio eletrônico consistem em campos elétricos e magnéticos que controlam o feixe de elétrons. Como um exemplo da manipulação de um feixe de elétrons, considere um elétron afastando-se da origem ao longo do eixo x no plano x-y com velocidade inicial vi = vii. Enquanto ele atravessa a região de x = 0 até x = d, o elétron tem uma aceleração a = axi + ayj, em que ax e ay são constantes. Suponha que vi = 1,80 x 107 m/s, ax = 8,00 x 1014 m/s2, e ay = 1,60 x 1015 m/s2. Determine em x = d = 0,010 m: (a) a posição do elétron. (b) a velocidade do elétron. (c) a velocidade escalar do elétron. (d) a direção da trajetória do elétron. (isto é: o ângulo entre sua velocidade e o eixo x). 2. Um ponto em uma mesa girante a 20,0 cm do centro acelera do repouso até a velocidade escalar final de 0,700 m/s em 1,75 s. Em t = 1,25 s, encontre o módulo e a direção: (a) da aceleração radial. (b) da aceleração tangencial. (c) da aceleração total do ponto. 3. Um estudante de ciências está em um vagão plataforma de um trem viajando ao longo de uma linha reta horizontal com uma velocidade escalar constante de 10,0 m/s. O estudante lança uma bola no ar ao longo de uma trajetória que ele julga fazer um ângulo de 60,00 com a horizontal e estar alinhada com os trilhos. A professora do estudante, que está parada no solo próxima ao trem, observa a bola subir verticalmente. Qual é a altura alcançada pela bola? 4. Em um jogo de beisebol acerta-se uma batida que leva à corrida por todo o circuito, sem parada, de tal forma que a bola passe exatamente sobre a arquibancada, com altura de 21,0 m, localizada a 130 m do local da batida. A bola é batida com um ângulo de 35,00 em relação à horizontal, e a resistência do ar é desprezível. Encontre: (a) a velocidade escalar inicial da bola. (b) o tempo que leva para a bola alcançar a arquibancada. (c) as componentes na velocidade escalar da bola quando ela alcança a arquibancada.(suponha que a bola seja rebatida a 1,00 m acima do solo) 5. Uma bola pequena densa está suspensa na extremidade inferior de uma corda leve com 1,00 m de comprimento, com a extremidade superior da corda fixa. Coloca-se a bola em oscilação em um círculo vertical. Seja θ o ângulo instantâneo que a corda faz com a vertical. Quando a bola está em duas posições onde a corda é horizontal, θ = 900 e θ = 2700, sua velocidade escalar é 5,00 m/s. (a) Encontre, o módulo da aceleração radial e da aceleração tangencial da bola para essas posições. (b) Trace, os diagramas vetoriais para determinar a direção da aceleração total para essas duas posições. (c) Calcule, o módulo e a direção da aceleração total. 6. Uma pessoa parada no alto de um rochedo hemisférico de raio R chuta uma bola (inicialmente em repouso no alto da rocha) fornecendo-lhe uma velocidade horizontal vi como na Figura 1. (a) Qual tem de ser a velocidade escalar inicial mínima da bola para que ela nunca alcance o rochedo depois de chutada? (b) Com essa velocidade escalar inicial, a que distância da base do rochedo a bola atinge o solo? Fig:1. 7. Seu avô é co-piloto de um bombardeiro, voando horizontalmente sobre terreno plano, com uma velocidade escalar de 275 m/s em relação ao solo, a uma altitude de 3000 m. (a) O artilheiro solta uma bomba. Qual distância ela vai percorrer horizontalmente entre sua liberação e seu impacto com o solo? Despreze os efeitos da resistência do ar. (b) O artilheiro é inexperiente e não grita, "Bombas ao ar!” Conseqüentemente, o piloto mantém rumo, altitude e velocidade escalar originais do avião. Onde estará o avião quando a bomba atinge o solo? (c) Em que ângulo, com a vertical, foi colocada na linha de mira telescópica de tal forma que a bomba atinja o alvo na mira no momento do lançamento? 8. Um carro está estacionado em uma rampa bem inclinada contemplando o oceano. A rampa faz um ângulo de 37,00 abaixo da horizontal. O motorista negligente deixa o carro em ponto morto, e os freios de mão estão defeituosos. O carro desce a rampa a partir do repouso com uma aceleração constante de 4,00 m/s2, percorrendo 50,0 m até a beira de um rochedo vertical. O rochedo íngreme está 30,0 m acima do oceano. Encontre: (a) a velocidade escalar do carro quando ele alcança a beira do rochedo e o tempo necessário par chegar até lá. (b) o tempo total que o carro fica em movimento. (c) a posição do carro quando ele chega ao oceano, em relação à base do rochedo. 9.Um navio inimigo está na costa leste de uma ilha montanhosa, como mostrado na Figura 2. O navio inimigo manobrou até 2500 m do pico da montanha com altura de 1800 m e só pode disparar projéteis com uma velocidade escalar inicial de 250 m/s. Se a linha da costa ocidental está horizontalmente a 300 m do pico, quais são as distâncias da costa ocidental nas quais um navio pode estar a salvo do bombardeio do navio inimigo? Fig: 2.