toy farmacologia.indd

Propaganda
CASO 1
Uma menina de 12 anos de idade, com história médica pregressa (HMP) comum, apresenta febre, dor de garganta e um curso de linfadenopatia cervical
sensível. Ela é diagnosticada com faringite estreptocócica do grupo A e é tratada com penicilina IM. Alguns minutos após a injeção, a paciente apresenta
dispneia, taquicardia e hipotensão, e percebe-se que apresenta sibilo ao exame. Também queixa-se de disfagia. Adrenalina (epinefrina) IM é administrada
imediatamente para sua reação anafilática.

Que efeito a adrenalina terá no sistema vascular dessa paciente?
Que adrenoceptor divide primariamente a resposta vascular?
 Que efeito terá a adrenalina em seu sistema respiratório?
 Que adrenoceptor divide primariamente a resposta do sistema respiratório?

12
TOY, LOOSE, TISCHKAU & PILLAI
RESPOSTAS PARA O CASO 1
Sistema nervoso simpático autônomo
Resumo: Uma menina de 12 anos de idade com “garganta estreptocócica” recebe
injeção de penicilina e desenvolve uma reação anafilática aguda.
•
•
•
•
Efeito da adrenalina sobre o sistema vascular: vasoconstrição.
Adrenoceptor que medeia primariamente a resposta vascular: alfa-1 (α1).
Efeito da adrenalina no sistema pulmonar: relaxamento muscular brônquico.
Adrenoceptor que medeia primariamente a resposta pulmonar: beta-2 (β2).
CORRELAÇÃO CLÍNICA
A anafilaxia é uma reação aguda imunomediada a um alérgeno caracterizada por
broncoespasmo, sibilo, taquicardia e hipotensão. A adrenalina é o fármaco de escolha utilizado para tratar essa condição, pois neutraliza os processos fisiopatológicos
subjacentes à anafilaxia por meio da ativação de adrenoceptores alfa (α) e beta (β).
Como em todas as situações de emergência, o ABC (via aérea, respiração, circulação) deve ser abordado em primeiro lugar. Ocasionalmente, a anafilaxia provoca
edema da laringe ao ponto de as vias aéreas serem comprometidas e a intubação
(colocação de um tubo na traqueia) ser impossível. Nessas circunstâncias, uma passagem de ar de emergência, tal como uma cirurgia de cricotiroideostomia (para
criar uma abertura na pele através da cartilagem cricoide), é necessária. A dose
apropriada: em crianças, 0,01 mg por quilograma (kg) de massa corporal (preparação de 1 mg/mL) ou uma dose máxima de 0,5 mg pode ser administrada por via
intramuscular e pode ser repetida a cada 5 a 25 minutos, conforme necessário. Em
adultos, 0,3 a 0,5 mg (preparação de 1 mg/mL).
ABORDAGEM AO
Sistema nervoso simpático autônomo
OBJETIVOS
1. Listar os neurotransmissores do sistema nervoso simpático autônomo e descrever sua localização anatômica.
2. Fazer uma lista dos receptores e subtipos de receptores do sistema nervoso
simpático autônomo.
3. Prever as respostas à ativação e à inibição dos receptores do sistema nervoso
simpático autônomo.
CASOS CLÍNICOS EM FARMACOLOGIA
13
DEFINIÇÕES
SISTEMA NERVOSO AUTÔNOMO: Subdivisão do sistema nervoso periférico que
é grandemente controlado de forma inconsciente, apresentado na Figura 1.1.
SISTEMA NERVOSO SIMPÁTICO: Uma divisão do sistema nervoso autônomo (a
outra é o sistema nervoso parassimpático). Fibras pré-ganglionares originam-se no
SNC e são transportadas nos nervos espinais torácicos e lombares, fazendo sinapse nos gânglios próximos da medula espinal. Também ocorrem sinapses na medula
Sistema nervoso simpático
Sistema nervoso parassimpático
Dilata a pupila
dos olhos
Inibe a secreção
das glândulas
salivares
Relaxa os
brônquios nos
pulmões
Acelera o
coração
Inibe a atividade
do estômago e
dos intestinos
Inibe a atividade
do pâncreas
Estimula a
liberação de
glicose do fígado;
inibe a vesícula
Estimula a medula suprarrenal
Inibe o
esvaziamento
da bexiga
Promove
ejaculação e
contrações
vaginais
Figura 1.1 Esquema do sistema nervoso autônomo.
Contrai a
pupila dos
olhos
Estimula as
glândulas
salivares
Retarda
o coração
Contrai os
brônquios
nos pulmões
Estimula a
atividade do
estômago e
dos intestinos
Estimula a
atividade do
pâncreas
Estimula
a vesícula
Promove o
esvaziamento
da bexiga
Promove ereção
da genitália
14
TOY, LOOSE, TISCHKAU & PILLAI
suprarrenal, que é considerada um gânglio modificado. Fibras pós-ganglionares
inervam uma ampla variedade de órgãos efetores e tecidos, incluindo arteríolas e
músculos lisos brônquicos.
AGONISTA: Uma molécula (fármaco) que se liga e ativa um receptor, resultando
em uma resposta.
ANTAGONISTA: Uma molécula (fármaco) que se liga aos receptores, com pouco
ou nenhum efeito de si mesma, mas que pode bloquear a ação de um agonista que
se liga aos mesmos receptores.
MIDRÍASE: Dilatação da pupila dos olhos.
DISCUSSÃO
Classe
Catecolaminas endógenas são os neurotransmissores típicos liberados de terminais
nervosos pós-ganglionares. O neurotransmissor noradrenalina (norepinefrina) é
liberado dos nervos eferentes do sistema nervoso autônomo simpático nas terminações simpáticas (também conhecidas como “adrenérgicas”) pós-ganglionares.
Adrenalina e algumas norepinefrinas são liberadas da medula suprarrenal.
Os agonistas catecolaminas interagem nos adrenoceptores pós-sinápticos
(assim denominados devido aos nervos adrenérgicos que eles inervam) que são
classificados como alfa (α) ou beta (β).
Existem dois subtipos de adrenoceptores α, α1 e α2. A ativação dos adrenoceptores α1, por agonistas adrenérgicos, resulta em contração da maior parte do
músculo liso vascular (α1), causando aumento da resistência periférica e da pressão
arterial, contração do músculo dilatador pupilar resultando em midríase, relaxamento do músculo liso gastrintestinal e contração dos esfincteres gastrintestinais (α1, indiretamente por meio da inibição da liberação de acetilcolina [ACh])
e ejaculação. A ativação de autorreceptores de adrenoceptores pré-sinápticos (α2)
por catecolaminas resulta na inibição (retroalimentação) da liberação de noradrenalina e outros neurotransmissores das suas respectivas terminações nervosas.
Existem três subtipos de adrenoceptores β, β1, β2 e β3. A ativação dos adrenoceptores β por agonistas adrenérgicos resulta em aumento da frequência e força de
contração do coração (β1), relaxamento do músculo liso dos brônquios que causa
broncodilatação (β2) e ativação da lipólise de células de gordura (β3).
Pelo fato de as catecolaminas adrenalina e noradrenalina terem funções fisiológicas importantes, medicamentos que bloqueiam suas ações, isto é, os antagonistas adrenoceptores, podem ter efeitos farmacológicos importantes e clinicamente
úteis. Os antagonistas não seletivos do adrenoceptor α (p. ex., fentolamina) são
utilizados para tratar a hipertensão de feocromocitoma (um tumor que secreta
catecolaminas) e disfunção erétil masculina, enquanto os antagonistas adrenoceptores α1 mais seletivos (p. ex., prazosina, terazosina, doxazosina) são utilizados
para tratar a hipertensão arterial e hiperplasia benigna da próstata (Tab. 1.1).
CASOS CLÍNICOS EM FARMACOLOGIA
15
TABELA 1.1 • Efeitos selecionados da ativação adrenoceptora
Órgão Efeitos (subtipo do adrenoceptor)
Músculo liso brônquico Dilata (β2)
Frequência cardíaca e forção contrátil
Aumenta (β1)
Olhos (tamanho da pupila)
Dilata (α1)*
Vasos sanguíneos Contraem (α1)**,***
Trato gastrintestinal (GI) (tônus, motilidade e secreções) Diminui (α1, β2)
Pâncreas (liberação de insulina)
Diminui (α2)
(midríase) resulta de estimulação adrenoceptora α1 do músculo radial
**Vasos sanguíneos do músculo esquelético têm adrenoceptores β que, quando ativados, resultam em cons2
trição dos vasos
***As artérias coronárias têm também adrenoceptores β que, quando ativados, resultam em dilatação dos
vasos, que é o efeito dominante
*Dilatação
Estrutura
Adrenalina e noradrenalina são catecolaminas, sintetizadas a partir da tirosina,
que possuem um núcleo de catecol com uma cadeia lateral de etilamina (adrenalina
é o derivado da cadeia lateral metilada de noradrenalina). A enzima limitante da
velocidade nesse processo é a tirosina hidroxilase.
Mecanismo de ação
A ligação da adrenalina a α1-adrenoceptores ativa proteína G (proteína de ligação
a GTP do tipo Gq [Gq]) para estimular a fosfolipase C, resultando na formação de
1,4,5-trifosfato de inositol (IP3) promove a liberação de Ca2+ a partir de depósitos
intracelulares. A interação da adrenalina com adrenoceptores α2 ativa a proteína de
ligação a GTP do tipo Gi (Gi) inibindo a atividade de adenilil-ciclase e diminuindo
o monofosfato de adenosina cíclico intracelular (AMPc). A adrenalina talvez também aumente o influxo mediado pelo adrenoceptor β1 de Ca2+ através de canais de
membrana.
Além do aumento da formação do segundo mensageiro, IP3, a adrenalina
também aumenta a formação mediada por fosfolipase de outro segundo mensageiro o diacilglicerol (DAG), que ativa a proteína cinase C influenciando inúmeras outras vias de sinalização. A adrenalina também ativa adrenoceptores β1 e β2
aumentando uma estimulação mediada pela proteína-G da atividade de adenilil
ciclase, aumentando, desse modo, os níveis intracelulares de AMPc e atividade de
proteína cinases dependentes de AMPc.
Administração
A adrenalina é, geralmente, administrada por via parenteral (IM) para o tratamento de choque anafilático. Para essa e outras condições, também está disponível
16
TOY, LOOSE, TISCHKAU & PILLAI
em preparações IV, SC, oftálmica, nasal e aerossol. A noradrenalina está disponível
apenas para administração parenteral IV em geral.
Farmacocinética
A adrenalina liberada pela glândula suprarrenal é metabolizada principalmente
pela catecol-O-metiltransferase (COMT) e monoamina-oxidase (MAO). A ação da
noradrenalina liberada de terminações nervosas é finalizada, principalmente, por
captação em terminações nervosas (captação 1) e outras células (captação 2).
QUESTÕES DE COMPREENSÃO
1.1 Percebe-se que uma paciente de 33 anos de idade com choque séptico tem
hipotensão persistente apesar de infusão de dopamina IV. A paciente é tratada
com uma infusão IV de adrenalina. Com qual adrenoceptor a adrenalina atua
para contrair o músculo liso vascular?
A.adrenoceptores α1
B.adrenoceptores α2
C.adrenoceptores β1
D.adrenoceptores β2
1.2 Um paciente de 16 anos de idade está tendo uma crise de asma aguda. A adrenalina é administrada por via SC. Por meio de qual dos seguintes adrenoceptores
a adrenalina atua para dilatar o músculo liso brônquico?
A.adrenoceptores α1
B.adrenoceptores α2
C.adrenoceptores β1
D.adrenoceptores β2
1.3 Qual das seguintes alternativas descreve melhor a ação celular da adrenalina?
A. Ativação de adenilciclase
B. Diminuição da atividade de proteínas cinases dependentes de AMPc
C. Aumento de depósitos intracelulares de Ca2+
D. Inibição da atividade de fosfolipase
1.4 A ativação de adrenoceptor β1 mediada por adrenalina resulta em qual das
seguintes opções?
A. Constrição da musculatura lisa brônquica
B. Redução da motilidade gastrintestinal
C. Dilatação das pupilas
D. Aumento da frequência cardíaca
CASOS CLÍNICOS EM FARMACOLOGIA
17
RESPOSTAS
1.1A. Os adrenoceptores α1 medeiam a vasoconstrição em muitos leitos vasculares. No músculo esquelético, a adrenalina pode atuar nos adrenoceptores β2
provocando vasodilatação.
1.2D. A adrenalina atua nos adrenoceptores β2 causando relaxamento do músculo liso dos brônquios, resultando em broncodilatação. Devido aos efeitos
cardiovasculares adversos da adrenalina (β1), agonistas de adrenoceptores β2
mais seletivos são utilizados atualmente (p. ex., albuterol).
1.3A. A adrenalina ativa adrenoceptores α1 causando uma liberação de Ca2+
intracelular armazenado e adrenoceptores β1 e β2 ativando adenilil-ciclase.
1.4D. A ativação pela adrenalina de adrenoceptores β1 resulta em aumento da
frequência cardíaca. A ativação de adrenoceptores α1 resulta na dilatação das
pupilas. A ativação de adrenoceptores β2 provoca a dilatação do músculo liso
brônquico e diminui a motilidade gastrintestinal (GI).
DICAS DE FARMACOLOGIA
 Fisiologicamente, a adrenalina atua como hormônio nas células distantes, após sua libe-
ração da medula suprarrenal.
 Neurônios pós-ganglionares simpáticos que inervam as glândulas sudoríparas e o múscu-
lo liso vascular renal liberam ACh e dopamina, respectivamente. Todos os outros neurônios pós-ganglionares simpáticos liberam noradrenalina.
 A adrenalina/noradrenalina medeia a resposta fisiológica de “luta ou fuga”. Por exemplo,
ao tentar escapar de um leão, as pupilas dilatam para melhorar a visão, todos os esfincteres contraem, a frequência cardíaca aumenta para otimizar o bombeamento do sangue,
a resistência vascular periférica melhora para evitar síncope, ocorre broncodilatação para
melhorar a oxigenação e o aumento do fluxo vascular para o músculo esquelético para
ajudar a manobrar a saída da situação.
 Adrenalina administrada por via exógena aumenta a pressão arterial por meio de sua
ação sobre adrenoceptores β1 no coração, resultando em aumento da frequência cardíaca
e força de contração, e por meio de sua ação sobre adrenoceptores a1 em muitos leitos
vasculares que resulta na vasoconstrição.
 No músculo esquelético, a injeção de adrenalina pode resultar em vasodilatação (β2) que,
em alguns casos, pode conduzir a diminuição da resistência periférica total e diminuição
da pressão diastólica.
 A noradrenalina tem pouco efeito nos adrenoceptores β2 (noradrenalina e adrenalina têm
efeitos semelhantes nos adrenoceptores α1 e β1), aumentando, assim, tanto a pressão
arterial sistólica como a diastólica.
18
TOY, LOOSE, TISCHKAU & PILLAI
REFERÊNCIAS
Brown SG. Cardiovascular aspects of anaphylaxis: implications for treatment and diagnosis.
Curr Opin Allergy Clin Immunol. 2005;5(4):359.
Brown SG, Mullins RJ, Gold MS. Anaphylaxis: diagnosis and management. Med J Aust.
2006;185(5):283.
Goldstein DS, Robertson D, Straus SE, et al. Dysautonomias: clinical disorders of the autonomic
nervous system. Ann Intern Med. 2002;137(9):753–63.
Lieberman PL. Anaphylaxis. In: Adkinson NF Jr, Bochner BS, Busse WW, et al. (eds).
Middleton’s Allergy: Principles and Practice, 7th ed. Mosby, St. Louis 2009. p. 1027.
Simons KJ, Simons FE. Epinephrine and its use in anaphylaxis: current issues. Curr Opin
Allergy Clin Immunol. 2010;10(4):354.
Download