1. (Pucrj 2015) Um bloco de gelo se encontra em repouso no alto de uma rampa sem atrito, sendo sustentado por uma força horizontal F de módulo 11,6 N, como mostrado na figura. Dados: g 10m s2 sen 30 0,50 cos 30 0,87 a) Calcule a massa do bloco de gelo. b) Considere agora que a força F deixe de atuar. Calcule a velocidade com que o bloco chegaria à base da rampa, após percorrer os 6,4 m de sua extensão. 2. (Pucrj 2013) Na figura abaixo, o bloco 1, de massa m1 = 1,0 kg, havendo partido do repouso, alcançou uma velocidade de 10 m/s após descer uma distância d no plano inclinado de 30°. Ele então colide com o bloco 2, inicialmente em repouso, de massa m2 = 3,0 kg. O bloco 2 adquire uma velocidade de 4,0 m/s após a colisão e segue a trajetória semicircular mostrada, cujo raio é de 0,6 m. Em todo o percurso, não há atrito entre a superfície e os blocos. Considere g = 10 m/s2. a) Ao longo da trajetória no plano inclinado, faça o diagrama de corpo livre do bloco 1 e encontre o módulo da força normal sobre ele. b) Determine a distância d percorrida pelo bloco 1 ao longo da rampa. c) Determine a velocidade do bloco 1 após colidir com o bloco 2. d) Ache o módulo da força normal sobre o bloco 2 no ponto mais alto da trajetória semicircular. 3. (Pucrj 2012) Um arqueiro se prepara para lançar uma flecha de massa 100 g da borda de um precipício, de altura H = 320 m, utilizando uma balestra. O arqueiro retesa as cordas da balestra, que podemos supor como sendo um sistema de molas com um coeficiente k = 1440 N/m, para lançar horizontalmente a flecha que segue a trajetória representada na figura abaixo. Dados: a resistência do ar é desprezível e g = 10 m/s2 a) Dado que o arqueiro puxa as cordas por d = 30 cm, calcule a velocidade de saída da flecha. b) Calcule o intervalo de tempo necessário para que a flecha caia no chão abaixo. c) Calcule a distância horizontal D percorrida pela flecha até tocar o chão. 4. (Pucrj 2010) Alberto (A) desafiou seu colega Cabral (C) para uma competição de cabo de guerra, de uma maneira especial, mostrada na figura. Alberto segurou no pedaço de corda que passava ao redor da polia enquanto que Cabral segurou no pedaço atado ao centro da polia. Apesar de mais forte, Cabral não conseguiu puxar Alberto, que lentamente foi arrastando o seu adversário até ganhar o jogo. Sabendo que a força com que Alberto puxa a corda é de 200 N e que a polia não tem massa nem atritos: a) especifique a tensão na corda que Alberto está segurando; b) desenhe as forças que agem sobre a polia, fazendo um diagrama de corpo livre; c) calcule a força exercida pelo Cabral sobre a corda que ele puxava; d) considerando que Cabral foi puxado por 2,0 m para frente, indique quanto Alberto andou para trás. 5. (Pucrj 2009) Um brinquedo de parque de diversões consiste (veja as figuras a seguir) de um eixo vertical girante, duas cabines e um suporte para os cabos que ligam o eixo às cabines. O suporte é uma forte barra horizontal de aço, de L = 8,0 m de comprimento, colocada de modo simétrico para poder sustentar as cabines. Cada cabo mede d = 10 m. Quando as pessoas entram nas cabines, o eixo se põe a girar e as cabines se inclinam formando um ângulo ? com a vertical. O movimento das cabines é circular uniforme, ambos de raio R. Considere a massa total da cabine e passageiro como M = 1000 kg. Suponha que è = 30°. Considere g = 10 m/s2 para a aceleração gravitacional e despreze todos os efeitos de resistência do ar. a) Desenhe na figura anterior o raio R de rotação, para a trajetória da cabine do lado direito, e calcule seu valor. b) Desenhe na figura anterior as forças agindo sobre a cabine do lado esquerdo. Qual a direção e o sentido da força resultante Fr sobre esta cabine? c) Sabendo que as forças verticais sobre a cabine se cancelam, calcule a tensão no cabo que sustenta a cabine. d) Qual o valor da força centrípeta agindo sobre a cabine? Gabarito: Resposta da questão 1: a) De acordo com o diagrama de forças abaixo representado: Para o eixo horizontal: F Nx N sen 30 (1) Para o eixo vertical: Ny P N cos 30 m g N mg (2) cos 30 Substituindo (2) em (1): F mg sen 30 cos 30 Explicitando a massa: m F g tan 30 11,6 N 3 10 m / s 3 m 2 kg 2 b) A velocidade na base da rampa é calculada pela equação de Torricelli após determinarmos a aceleração devida à componente do peso Pz decomposta na direção do plano inclinado. Pz m g sen 30 a Pz g sen 30 10 m / s2 0,5 5 m / s2 m Pro Torricelli: v 2 v02 2aΔs v v02 2aΔs v 0 2 5 m / s2 6,4 m v 8 m / s Resposta da questão 2: Em toda a questão o atrito será desprezado a) Observando a figura abaixo podemos concluir que N Pcos30 10 3 5 3N. 2 b) Pela conservação da energia. mgdsen30 1 mV2 10xdx0,5 0,5x102 d 10 m 2 c) Pela conservação da quantidade de movimento na colisão, vem: m1V1 m2 V2 m1 V0 1 m2 V0 2 1xV1 3x4 1x10 3x0 V1 10 12 2,0m / s d) As figuras abaixo mostram as posições inicial e final do bloco 2 e as forças que agem sobre ele no topo da lombada. Podemos determinar V pela Conservação da energia. 1 1 mV 2 mgH mV02 V 2 2gH V02 2 2 1 2 1 V 10x0,6 x42 V 2 4 2 2 A força centrípeta no topo da trajetória vale: P N m V2 4 30 N 3x 30 N 20 N 10N R 0,6 Resposta da questão 3: a) Dados: k = 1.440 N/m; d = 30 cm = 0,3 m; m = 100 g = 0,1 kg. Pela conservação da energia mecânica, a energia potencial elástica armazenada na balestra é transformada em cinética na flecha: mv 2 k d2 2 2 v 36 m /s. vd k 1.440 v 0,3 0,3 14.400 0,3 120 m 0,1 b) Dados: H = 320 m; g = 10 m/s2. O tempo de voo do lançamento horizontal é igual ao tempo de queda livre. Então: H 1 g t2 2 t 2 H g 2 320 10 64 t 8 s. c) Dos itens anteriores: v = 36 m/s; t = 8 s. Na horizontal, o movimento é uniforme: D v t 36 8 D 288 m. Resposta da questão 4: a) A tensão (ou tração, que é o termo mais adequado) na corda corresponde à intensidade da força aplicada por Alberto: T = 200 N. b) F : força de tração no centro da polia, aplicada por Cabral; T : forças aplicadas pela corda que passa pela polia. c) Como a polia não tem massa (ou seja, sua massa é desprezível) e, além disso, ela está sendo arrastada quase-estaticamente (ou seja, com velocidade constante a = 0), aplicando o princípio fundamental, temos: F – 2 T = m a F – 2 T = 0 F = 2 T = 2 (200) F = 400 N. d) A figura a seguir mostra que quando a ponta da corda desloca D (do ponto do ponto P até o ponto P’ ), o centro da polia desloca D/2. Assim, se corda que Alberto puxa enrola D, essa distância é distribuída nos dois braços da polia, fazendo com o seu centro desloque D/2. Portanto, se Carlos avança 2 m, Alberto recua 4 m. Resposta da questão 5: 8 R = (L/2) + d.sen = + 10.sen30 = 4 + 10.0,5 = 4 + 5 = 9 m 2 Na figura T.cos = M.g T.cos30 = 1000.10 T.0,87 = 10000 T = 10000 = 11494 N 0,87 A resultante centrípeta atua no plano horizontal, logo: Fcentrípeta = T.sen30 = 11494.0,5 = 5747 N