ESCOLA DE APLICAÇÃO “DR. ALFREDO JOSÉ BALBI” UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: NO: blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são exemplos de funções: - O valor a ser pago numa corrida de táxi é função do espaço percorrido; - A área de um quadrado é função da medida do seu lado; - O consumo de combustível de um automóvel é função, entre outros fatores, da velocidade. Observe que as relações que vimos a seguir têm duas características em comum: - A todos os valores da variável independente estão associados valores da variável dependente; - Para um dado valor da variável independente está associado um único valor da variável dependente. As relações que têm essas características são chamadas de funções. Exemplos: 1) Nos itens abaixo, estão descritas algumas relações entre variáveis. Em cada caso, identifique a variável independente e a dependente. a) O número de refrigerante que uma pessoa compra e a quantia a ser paga. Resolução: b) A duração de uma chamada telefônica e o custo da chamada. Resolução: 2) O preço a ser pago por uma corrida de táxi inclui uma parcela fixa de R$ 6,00 , denominada bandeirada mais uma parcela variável de R$ 0,90 por km rodado. Determine: a) A função que representa o preço P de uma corrida em função de x quilômetros rodados. Resolução: b) O preço de uma corrida de 12 km. Resolução: c) A distancia percorrida por um passageiro que pagou R$ 96,00 pela corrida. Resolução: blog.portalpositivo.com.br/capitcar 2 DEFINIÇÃO MATEMÁTICA DE FUNÇÃO Sendo A e B dois conjuntos não vazios e uma relação f de A em B, essa relação f é uma função quando cada elemento x do conjunto A está associado a um, e somente um, elemento y do conjunto B. Indica-se por: f: A B Quando estas condições descritas na definição não forem satisfeitas, existirá apenas uma relação (R). Daí, concluímos que toda função é uma relação mas, nem toda relação e uma função. Observe os exemplos com diagramas: As figuras 1, 2 e 3 representam funções. Note que cada elemento do conjunto domínio A tem uma única chegada no conjunto contradomínio B. Chamamos de conjunto imagem (Im) aos elementos de B que se relacionaram com os elementos de A. No conjunto contradomínio pode sobrar elemento. A letra f acima do diagrama indica que a relação especial é uma função. fig.1 fig.2 fig.3 As figuras 4, 5 e 6 representam apenas relações. Note que na fig. 4 alguns elementos de A têm duas chegadas em B, na fig. 5 sobrou um elemento de A sem relacionar-se com B e, finalmente, na fig. 6 um único elemento de A têm várias chegadas em B. A letra R acima do diagrama indica ser apenas uma relação. fig.4 fig.5 fig.6 Exemplos 1) Dados A = { -3, -2, 0, 3 } e B = { - 1, 0, 1, 2, 4, 5, 7 } e uma relação expressa pela fórmula y = x + 2, com x pertencendo a A e y pertencendo a B. a) Faça o diagrama e verifique se f é uma função de A em B. Resolução: b) Se for uma função de A em B, determine o domínio, a imagem e o contra-domínio de f. Resolução: blog.portalpositivo.com.br/capitcar 3 2) Seja a função f: a) O valor de f(-1) Resolução: definida por f(x) = x2 - 7x + 9. Determine: b) Os valores de x para que se tenha f(x) = -1. Resolução: 3) Dadas as funções f(x) = 4x + 3 e g(x) = x2 + a. Sabendo que f(2) - g(1) = 3, calcule o valor de a. Resolução: 4) Dada a função f: definida por f(x) = ax + b, com a e b ∈ ℜ . Determine a e b, sabendo que f(1) = 3 e f(2) = 5. Resolução: DOMINIO DE UMA FUNÇÃO REAL DE VARIÁVEL REAL Quando trabalhamos com uma função, é importante sabermos qual o domínio dessa função, pois é ele que vai determinar os valores possíveis para a variável independente. Em muitos casos, o domínio e o contradomínio não vêm explicitados, devemos, então, considerar como domínio o conjunto de todos os números reais que podem ser colocados no lugar da variável independente na fórmula da função, obtendo, após os cálculos, um número real, já, o contradomínio será os números reais. Exemplos 1) Encontrar o domínio das funções: a) f(x) = 3x2 - 4x + 2 Resolução: c) f(x) = 4x − 4 Resolução: 3x − 5 2x − 4 Resolução: b) f(x) = x−5 3x − 3 + x+2 x−4 Resolução: d) f(x) = blog.portalpositivo.com.br/capitcar 4 GRÁFICO DE UMA FUNÇÃO Para construir o gráfico de uma função, utilizaremos o sistema de coordenadas cartesianas ortogonais. O sistema de coordenadas ortogonais é composto por: - Duas reta perpendiculares entre si, onde a reta horizontal é o eixo x (abscissas) e a reta vertical o eixo y (ordenadas). - O cruzamento das duas retas é a origem do sistema. - As retas dividem o plano em quatro partes iguais chamadas de quadrantes. O gráfico é conjunto de todos os pontos (x;y) do plano cartesiano, com x ∈ D e y ∈ Im. Para isso, consideremos os valores do domínio da função o eixo x e as respectivas imagens no eixo y. Exemplos: 1) Construir o gráfico das funções: a) f : A → B , definida por f(x) = x + 2, sendo A = { -1; 0; 1; 2 } e B = { 1; 2; 3; 4; 5 } b) f: definida por f(x) = x + 2 blog.portalpositivo.com.br/capitcar 5 ANALISANDO GRÁFICOS DE FUNÇÕES A partir do gráfico de uma função, podemos obter informações importantes sobre o comportamento dessa função, como: - O domínio e a imagem. - Os pontos onde o gráfico intercepta os eixos coordenados. - Os intervalos para os quais a função é crescente, decrescente ou constante. constante - Os intervalos para os quais is a o valor da função é positivo e negativo. - O valor máximo ou mínimo que a função atinge. - O (s) valor (es) da(s) raiz(es) da função. Como reconhecer quando um gráfico representa uma função Como para cada valor de x do domínio devemos ter em correspondência correspondência um único y do contradomínio, é possível identificar se um gráfico representa ou não função, traçamos retas paralelas ao eixo y. Para ser função, cada reta vertical traçada por pontos do domínio deve interceptar o gráfico em um único ponto. Como determinar o domínio e a imagem da função - O domínio de uma função é obtido pela projeção dos pontos do gráfico sobre o eixo x (abscissas) - A imagem de uma função é obtida pela projeção dos pontos do gráfico sobre o eixo y (ordenadas) Exemplo D(f) = { x ∈ ℜ/1 ≤ x ≤ 6 } Im(f) = { y ∈ ℜ / 2 ≤ y ≤ 5 } blog.portalpositivo.com.br/capitcar 6 Como determinar as raízes ou os zeros de uma função Graficamente a(s) raiz(es) de uma função é(são) a(s) a(s) abscissa(s) do(s) ponto(s) onde o gráfico encontra o eixo x (abscissas). Exemplo Logo, os números 2 e 5 são as raízes ou os zeros da função Como determinar o intervalo onde a função é crescente, decrescente ou constante - Se aumentarmos o valor da variável independente e aumentar os valores da imagem, temos função crescente. - Se aumentarmos o valor da variável independente e diminuir os valores da imagem, temos função decrescente. Se aumentarmos o valor da variável independente e não alterar os valores da imagem, temos função constante. y constante crescente decrescente x o Valor máximo e Valor mínimo de uma função y máximo f(x2) mínimo Valor máximo f(x2) Valor mínimo f(x1) Prof. Carlinhos f(x1) x o X1 X2 Bibliografia: Curso de Matemática – Volume Único Autores: Bianchini&Paccola – Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD Contexto&Aplicações – Volume Único Autor: Luiz Roberto Dante – Ed. Ática blog.portalpositivo.com.br/capitcar 7