Laboratório de Física – UVV 1/8 Capacitor de Placas Paralelas Professor: ______________________________________________________________________ Alunos: Turma: __________ Data: _____/_____/20____ 1: _____________________________________________________________________________ 2: _____________________________________________________________________________ 3: _____________________________________________________________________________ 4: _____________________________________________________________________________ 5: _____________________________________________________________________________ 1.1. Objetivos ➢ Determinar a constante dielétrica do ar e do papel através do gráfico . 1.2. Equipamentos Lista de equipamentos necessários para a realização do relatório ✔ Capacitor ajustável de placas paralelas; ✔ Capacímetro digital; ✔ folhas de papel Chamex recortadas em retângulos de ¼ de folha. 2. Apresentação Um capacitor consiste basicamente de duas peças metálicas isoladas espacialmente. A forma e distribuição espacial destas placas mudam de acordo com as intenções do capacitor, possuindo geralmente formas geométricas simples como placas paralelas, cilíndricas e esféricas, além de outras formas menos simétricas como uma fração de disco, muito utilizadas em capacitores variáveis, Figura 1. (a) (b) (c) Figura 1: Capacitores comerciais: (a) Capacitor Variável; (b) Capacitores Eletrolíticos; (c) Capacitores de Placas Paralelas. Um capacitor, independente do tipo, tem como função básica armazenar energia elétrica no campo gerado pelo acúmulo de cargas em suas placas. A razão entre esta carga nas placas e a tensão Laboratório de Física – UVV 2/8 necessária para deslocá-las é definida como capacitância: (1) a qual depende exclusivamente de características geométricas do capacitor, como a área das placas, separação entre elas, forma e o material dielétrico empregado como isolante. Para o capacitor de placas paralelas, sua capacitância pode ser facilmente demonstrada como: (2) onde, → permissividade elétrica do vácuo; → área das placas; → distância entre as placas; → a contante dielétrica do meio. Neste experimento será explorado Figura 2: Capacitor de Placas Paralelas Cidepe Os valores das constantes dielétricas de cada material são dados na Figura 1. Meio Vácuo Ar Papel 1,00000 1,00054 3,5 Água ( ) 78,5 Tabela 1: Constantes dielétricas de diferentes meios. 3. Experimento Neste experimento será empregado um capacitor de placas paralelas como o ilustrado na Figura 2, composto de duas placas metálicas circulares, sendo uma móvel e outra fixada ao corpo do equipamento. Aproveitando que o equipamento ainda não foi ligado, com o auxílio de um paquímetro, meça o diâmetro da placa móvel: : __________±__________ (mm) Antes de sua execução, proceda com a calibração a seguir. 3.1. Cuidado com o Capacímetro Durante todo o experimento nunca permita que os terminais do Capacímetro entrem em curto, pois Laboratório de Física – UVV 3/8 isto pode danificar o equipamento. 3.2. Calibração do Capacímetro Antes de iniciar o experimento, execute o processo de calibração a seguir: ● Inicialmente monte o capacitor de placas paralelas com a placa móvel o mais distante possível da placa fixa e de preferência ortogonal a esta, como ilustrado na Figura 3; ● Coloque o capacímetro na escala de metálicos, traseiros das placas do capacitor; ● Em seguida gire o botão de ajuste, ADJ indicado na Figura 3, para zera a capacitância medida no capacímetro; e em seguida o conecte aos terminais Figura 3: Capacitor de Placas Paralelas ● Feito isto, posicione a placa móvel sobre a base do capacitor, Figura 4, e desconecte o capacímetro um dos terminais do capacímetro; ● Em seguida mova a placa móvel até está encostar na placa fixa; ● Neste momento verifique se o traço na placa móvel encontra com o zero na escala milimetrada, fixada à base do capacitor; ● Caso estes não estejam alinhados, ajuste sua posição liberando o parafuso na parte inferior do capacitor, ou chame o seu professor; ● Após isto separe as placas e reconecte o terminal do capacímetro. Laboratório de Física – UVV 4/8 Figura 4:Montagem Experimental para realização da medida. Com isso, o experimento está pronto para iniciar. 3.3. Ar como Dielétrico Neste primeiro experimento será medida a capacitância em função da separação entre as placas utilizando como dielétrico o ar. ✗ Inicialmente posicione a placa móvel na posição ✗ Em seguida mova a placa móvel para direita em intervalos de 2, abaixo. # e religue o capacímetro; e preencha a Tabela # 1 ___________ ___________ 6 ___________ ___________ 2 ___________ ___________ 7 ___________ ___________ 3 ___________ ___________ 8 ___________ ___________ 4 ___________ ___________ 9 ___________ ___________ 5 ___________ ___________ 10 ___________ ___________ Tabela 2: Capacitância em função da separação das placas para dielétrico Ar. 3.4. Papel como Dielétrico Neste segundo experimento será feito o mesmo tipo de medida anterior, no entanto neste momento será empregado papel como dielétrico para o capacitor. ✗ Inicialmente separe as folhas em grupos de vinte folhas; ✗ Em seguida coloque o primeiro grupo de folhas de papel entre as placas do capacitor e pressione pelas PLACAS do capacitor (não a base plástica), Figura 5-a. Isto interferirá na medida da capacitância, observe o capacímetro; ✗ Para realizar a medida segure (não empurre) a base plástica móvel e retire as mão das placas, Figura 5-b. Aguarde até que o capacímetro estabilize e realize a leitura, preenchendo a Tabela 3; ✗ A seguir adicione mais um grupo de folhas e repita o procedimento. Laboratório de Física – UVV (a) 5/8 (b) Figura 5: Operação do Capacitor de Placas Paralelas # # 1 ___________ ___________ 6 ___________ ___________ 2 ___________ ___________ 7 ___________ ___________ 3 ___________ ___________ 8 ___________ ___________ 4 ___________ ___________ 9 ___________ ___________ 5 ___________ ___________ 10 ___________ ___________ Tabela 3: Capacitância em função da separação das placas para dielétrico Papel. 4. Equações e Expressões Relevantes Nesta seção são apresentados as expressões, equações e definições necessárias para o desenvolvimento do experimento. O Formulário aponta as equações e definições essenciais para o desenvolvimento das expressões na Composição, enquanto que este último apresenta as expressões finais, geralmente, para a resolução do problema apresentado no experimento. 4.1. Formulário (3) Capacitância de um capacitor de Placas Paralelas. 4.2. Composições (4) Capacitância de um capacitor de placas paralelas circulares, de diâmetro ; (5) equação de ajuste a uma reta para a equação (4), onde b deve ser próximo de zero. Laboratório de Física – UVV 6/8 5. Resultados: Capacitor de Placas Paralelas Complete a Tabela 4 com os coeficientes Tabela 2. # [ ] , em , calculados a partir das medidas da # [ ] 1 ___________ ___________ 6 ___________ ___________ 2 ___________ ___________ 7 ___________ ___________ 3 ___________ ___________ 8 ___________ ___________ 4 ___________ ___________ 9 ___________ ___________ 5 ___________ ___________ 10 ___________ ___________ Tabela 4: Capacitor de Placas Paralelas com Ar Repita o processo para a Tabela 5, com os coeficientes calculados a partir das medidas da Tabela 3. # [ ] # [ ] 1 ___________ ___________ 6 ___________ ___________ 2 ___________ ___________ 7 ___________ ___________ 3 ___________ ___________ 8 ___________ ___________ 4 ___________ ___________ 9 ___________ ___________ 5 ___________ ___________ 10 ___________ ___________ Tabela 5: Capacitor de Placas Paralelas com Papel Em seguida faça os gráficos seguir. com estes pontos nas páginas milimetradas a Determine as constantes dielétricas através dos gráficos preenchendo a Tabela 6, a seguir. Ar _____________ _____________ _____________ Papel _____________ _____________ _____________ Tabela 6: Comparação entre as constantes dielétricas Laboratório de Física – UVV Figura 6: Capacitor de Placas Paralelas com Ar 7/8 Laboratório de Física – UVV Figura 7: Capacitor de Placas Paralelas com Papel 8/8