Bases Físicas do Aquecimento Global Mariane Coutinho Centro de Ciência do Sistema Terrestre Instituto Nacional de Pesquisas Espaciais Radiation Balance of the Earth Source: ceres.larc.nasa.gov/ceres_brochure.php - J. Kiehl and K. Trenberth Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho The electromagnetic spectrum Electromagnetic radiation described as an ensemble of waves propagating at the speed of light § Energy that it carries partitioned into contributions from different wavelength bands § 1 nm = 10-9 m 1 m = 10-6 m Wavelength bands carrying most of energy associated with: solar radiation shortwave ( < 4 m, concentrated in visible 0.4 - 0.7 m and near infrared 0.7 - 4 m) terrestrial radiation longwave ( > 4 m, infrared) § Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Effective Temperature of Earth or Equivalent Blackbody* Temperature Temperature detected from space Balance between energy absorbed and emitted by surface+atmosphere § 1.5x108 km Earth Energy emitted Stefan-Boltzman law: total energy radiated per unit surface area per unit time (flux density or irradiance) of a blackbody* is given by Fe = T4, where = 5.67 x 10-8 W m-2 K-4 à Energy emitted = Te4 x (4 re2), Te = effective temperature of Earth ü § Energy absorbed Solar constant (flux density) at Earth's distance: 1368 W m-2 ü Albedo (reflectivity) of Earth ~ 0.3 à Energy absorbed = (1 - 0.3) x 1368 x ( re2) ü Incident solar radiation intercepted over the area re2 re Energy balance: Te4 = (0.7 x 1368) / 4 = 239.4 W m-2 Outgoing (blackbody) terrestrial radiation emitted over the area 4 re2 Te = 255 K = -18ºC (cold!) *A blackbody is an ideal body that absorbs all radiation incident on it. It is also a perfect emitter. Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Natural greenhouse effect of atmosphere on temperature of Earth, Mars and Venus Decrease in temperature (ºC) with distance from the sun (x 106 km): Solid curve – planets with no reflection and no atmospheres Open circles – reflection taken into account Solid circles – actual temperatures at the surfaces The length of each dashed line is a measure of the greenhouse effect (from Philander, 1998) Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho The greenhouse effect Some of this outgoing infrared radiation passes through the atmosphere back to space Some solar radiation is reflected Infrared radiation is emitted from the surface Some of this outgoing infrared radiation is trapped by the atmosphere and warms it Most solar radiation is absorbed by the surface and warms it The greenhouse effect Terrestrial radiation emitted from the surface is absorbed and reemitted in its upward passage through the atmosphere. Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho The greenhouse effect Solar and terrestrial radiation occupy different ranges of the electromagnetic spectrum (shortwave and longwave, respectively) Lei do Deslocamento de Wien: O valor do comprimento de onda para o qual a radiância emitida por um corpo negro é máxima é inversamente proporcional à sua temperatura. (and above) (entire atm.) Water vapor, carbon dioxide and other gases whose molecules have electric dipole moments absorb more strongly in the longwave part of the spectrum (terrestrial radiation) Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho The greenhouse effect: simple model isothermal layers Assume that the incoming shortwave radiation (after removing the reflected component) is transmitted by the atmospheric layers, and is all absorbed at the surface. § Assume that the surface emits as blackbody with Ts. § Assume the atmosphere absorbs all of this energy, and reemits as a blackbody with Ta to space and back to surface. § Single isothermal layer i. Solar radiation F Ta Energy balance at the top-of-atmosphere: F = (0.7 x 1368) / 4 = 239.4 W m-2 = Ta4 (using the Stefan-Boltzman law for the atmosphere) Ta4 Energy balance at the surface: F + Ta4 = (239.4 x 2) W m-2 = Ts4 (using the Stefan-Boltzman law for the surface) Atmospheric layer F Ts Ta4 Solving the equations for Ta e Ts: Ts4 temperature of surface 48 K higher than in absence of the greenhouse effect § Ta = 255 K temperature of atmosphere is 255 K as calculated for the planet before § Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Ts = 303 K The greenhouse effect: simple model isothermal layers ii. Two isothermal layers Solar radiation F F Atmospheric layer F 2F Stefan-Boltzman law: F 3F = (239.4 x 3) W m-2 = Tg4 Atmospheric layer F iii. 2F 335 K 3F Ts = = 5.67 x 10-8 W m-2 K-4 N isothermal layers Ts = [(N+1)F/]1/4 K The above model assumes pure radiative balance and is greatly simplified. The global mean surface temperature of the Earth is ~288 K (15ºC) as a consequence of the greenhouse effect. We can make the simple model more realistic… Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho More realistic models Consider other forms of energy apart from radiation: latent and sensible heat fluxes. § Consider the dependence of absorption on the wavelength of the radiation. § (and above) (entire atm.) The wavelength dependence is quite pronounced, with well defined absorption bands identified with specific gaseous constituents and also windows in which the atmosphere is relatively transparent. Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Non-blackbodies Unlike blackbodies, which absorb all incident radiation, non-blackbodies can also reflect and transmit radiation. § The radiation laws derived for blackbodies can be applied by defining the emissivity ε(λ) as the fraction of the blackbody irradiance emitted at a given wavelength. The emissivity varies between 0 and 1 and is a function of wavelength and type of surface. § For non-blackbodies, the StefanBoltzman law is written as F = ε T4 where ε is an average emissivity value. § Also useful are the absorptivity, reflectivity and transmissivity, Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global defined as the fractions of the § Mariane Coutinho Modified single layer greenhouse model Assume ε (long) < 1 for the atmosphere Note: Kirchhoff’s law states that absorptivity equals emissivity, at all wavelengths absorptivity of atmosphere for longwave (terrestrial) radiation = ε. Solar radiation F Ta Atmospheric layer F Ts εTa4 εTa4 (1-ε)Ts4 εTs4 Ts4 Energy balance at the top-of-atmosphere: F = εTa4 + (1-ε)Ts4 Energy balance at the surface: F + εTa4 = Ts4 For example, assuming ε (long) = 0.7 for the atmosphere we obtain Ta = 238.7 K (~-34ºC) Ts = 283.9 K (~11ºC) Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Exercício Utilizando um modelo com uma única camada atmosférica isotérmica análogo ao discutido, mostre a expressão mais geral para Ts a seguir: T S = 4 S 0 (1 − α ) 2σ ( 2 − ε ) , assumindo: S0: constante solar α: albedo planetário ε: emissividade de onda longa para a atmosfera σ: constante de Stefan-Boltzman Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Implicação Considerando-se a expressão obtida para a temperatura de equilíbrio global média da superfície nesse modelo simples: S 0 (1 − α ) T S = 4 2σ ( 2 − ε ) vemos que há três termos no lado direito que podem variar significativamente e alterar o clima: www.windows2universe.org 1. S0: variações na constante solar, parâmetros orbitais 2. α: variações no albedo planetário www.windows2universe.org 3. ε: variações da emissividade no infravermelho – aumento nas concentrações de gases de efeito estufa devido a atividades humanas ou outras causas em diferentes escalas de tempo Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Exercício para Avaliação Mudanças no Balanço de Energia: Seja Q a radiação líquida absorvida pelo sistema climático medida no topo da atmosfera. Considerando-se médias anuais globais temos Q=0 para um sistema em equilíbrio. Para o modelo com uma única camada atmosférica isotérmica mostre que Q é dado por: S ε Q = 0 ( 1 − α ) − ε ′ σ TS4 ε ′ = 1− 4 2 onde . Obs.: Isso equivale a dizer que a Terra emite como um corpo cinza para o espaço. Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Greenhouse gases Gases which absorb in the longwave region. The energy of an infrared photon is insufficient to cause electronic excitation but can cause vibrational or rotational excitation. Molecular vibration Vibrational energy is quantized and the frequency of a vibration is the frequency of the photon necessary to excite the molecule to that vibrational energy level. For example: HCl frequencies of vibration are integer multiples of 8.66 × 1013 Hz. vibrates at 1 × (8.66 × 1013 Hz) and 2 × (8.66 × 1013 Hz) and so on. can only be excited between adjacent vibrational energy levels. Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Wavelength is λ = c/ν = (2.998 × 108 m/s)/(8.66 × www.windows2universe.org Molecular vibration Fundamental vibrations The number of possible types of vibrations is restricted by the number of atoms (N) in a molecule: 3N–5 for a linear molecule (all the atoms arranged in a line) 3N–6 for a non-linear molecule. For example, the number of vibrations for H2O is 3(3) – 6 = 3: O H H stretching O O H H H H stretching bending Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Fundamental vibrations For CO2, which is a linear molecule, there are 3(3) – 5 = 4 fundamental vibrations: O C + O O bending in plane O C stretching C + O bending out of plane O O C O stretching Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Vibrations and IR absorption Molecule must have change in dipole moment due to vibration or rotation to absorb infrared radiation. Thus, vibrations that do not change the overall dipole of the molecule do not lead to IR absorption. CO2, for example. has three vibrations that change the overall dipole of the molecule (called IR active): O C O symmetric stretching O C bending in plane O O C O anti-symmetric stretching + - + O C O IR ACTIVE bending out of plane Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Atmospheric gases Most abundant gases in the dry air close to the Earth’s surface: Gas % Volume Nitrogen N2 78.08 Oxygen O2 20.95 Argon Ar 0.93 Carbon Dioxide CO2 0.03 Each of the first two most abundant gases in the atmosphere has only 3(2) – 5 =1 fundamental vibration and it is symmetric: N N symmetric stretching O O symmetric stretching Neither O2 nor N2 absorbs infrared Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho Atmospheric gases Third most abundant gas is Argon atom, so does not vibrate (no bonds) No infrared absorption by Ar Next: CO2 and water both have non-symmetric vibrations à Both, CO2 and H2O absorb and emit infrared radiation in the atmosphere à Greenhouse effect There are trace gases in the atmosphere which are also important for the greenhouse effect, for example, CH4, N2O, O3, etc. More greenhouse gases in the atmosphere means more infrared radiation is absorbed and Earth’s surface becomes warmer! http://www.skepticalscience.com/graphics/SkepticsvRealists_500.gif Curso de Introdução a Mudanças Climáticas – Bases Físicas do Aquecimento Global Mariane Coutinho