MA13 – Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios de seus lados são vértices de um paralelogramo. 2) Construa o triângulo ABC conhecendo o lado BC (6,0cm), a mediana relativa ao lado BC (3,6cm) e a mediana relativa ao lado AC (5,4cm). 3) No triângulo ABC, retângulo em A, o menor ângulo agudo é entre a altura e a mediana relativas ao vértice A. . Calcule o ângulo 4) No triângulo ABC seja m a mediana relativa ao vértice A. Mostre que m bc . 2 5) Prove que, em todo triângulo a soma dos comprimentos das medianas é menor que o perímetro e maior que 3 4 do perímetro do triângulo. 6) Considere uma circunferência de centro O e diâmetro AB. Prolongue uma corda AP de um comprimento PQ igual a AP. As retas OQ e BP cortam-se em R. Calcule a razão entre os segmentos RQ e RO. 7) Seja ABCD o trapézio de bases AB 7 cm e CD 3 cm (e lados não paralelos AD e BC). Os ângulos internos de vértices A e B medem respectivamente 43o e 47o. Calcule a distância entre os pontos médios das bases do trapézio. 8) São dados no plano uma reta r e um paralelogramo ABCD tais que r não intersecta ABCD. Sabendo que as distâncias dos pontos A, B, e C à reta r são respectivamente iguais a 2, 3 e 6 centímetros, calcule a distância de D á r. 9) Construa com régua e compasso um trapézio conhecendo os comprimentos das bases e os comprimentos dos lados não paralelos. 10) Um triângulo ABC retângulo em A é tal que BC 2 AB . Calcule os ângulos desse triângulo. 11) Seja ABCD um quadrado, F o ponto médio do lado CD e E um ponto do lado CD tal que AE AB EC . Mostre que EAˆ B 2 FAˆ D . Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 3.1 e 3.2, pág. 90 em diante. 12) Construa com régua e compasso um triângulo ABC conhecidos os comprimentos c do lado AB, a do lado BC e a medida do ângulo BAC. Discuta o número de soluções. Faça a construção para c 6 cm, a 5 cm e BAˆ C 60 o . 13) São dados uma reta r, um ponto A e dois segmentos a e b. Determine um ponto B do plano tal que d ( A, B ) a e d ( B, r ) b . Sob que condições há solução? 14) É dado no plano o segmento AB e um ponto P variável sobre AB. De um mesmo lado da reta AB construa os triângulos retângulos isósceles APQ e BQR de hipotenusas AP e BP, respectivamente. Encontre o LG do ponto M, médio do segmento QR quando P varia sobre o segmento AB. 15) De um triângulo ABC conhecemos as posições dos vértices B e C e do circuncentro O. Explique por que a posição de A não está determinada. 16) De um triângulo ABC conhecemos as posições dos vértices B e C e do incentro I. Construa com régua e compasso o vértice A. 17) De um triângulo ABC conhecemos as posições dos vértices B e C e do ortocentro H. Construa com régua e compasso o vértice A. 18) Construa por P uma reta que passe pelo ponto de interseção das retas r e s da figura abaixo. Problemas suplementares 19) A reta r passa pelo vértice D do paralelogramo ABCD e não corta o paralelogramo. Sejam a, b e c as distâncias de A, B e C à reta r. Prove que b a c . 20) No trapézio ABCD, AB, DC, MM e NN são paralelas. Os pontos M e N dividem o lado AD em três partes iguais, AB a e DC b . Calcule os comprimentos dos segmentos MM e NN . 21) São dados: uma circunferência e um ponto P fixo. Uma reta r variável passa por P e corta a circunferência em A e B. Determine o LG do ponto médio da corda AB. Discuta os casos em que P é interior, exterior ou pertence à circunferência. 22) É dado um paralelogramo ABCD. Exteriormente ao paralelogramo construa os quadrados de lados AB, BC, CD e DA. Mostre que os centros desses quadrados são vértices de outro quadrado. MA13 – Exercícios das Unidades 6 e 7 2014 Lista 4 Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 3.3, 3.4 e 3.5, pág. 112 em diante. 1) São dadas as retas a, b e c com a || b e c concorrente com as outras duas. Descreva como construir as circunferências tangentes a essas três retas. 2) As retas AP e AQ tangenciam uma circunferência nos pontos P e Q e os segmentos AP e AQ medem 5cm cada. Os pontos B e C dos segmentos AP e AQ respectivamente são tais que BC é tangente a essa circunferência. Calcule os valores possíveis para o perímetro do triângulo ABC. 3) Seja ABCD um quadrado de lado A e seja a circunferência de centro A e raio a. Marcamos os pontos M e N sobre BC e CD de forma que MN tangencia . Quais são os valores possíveis do ângulo MAN? 4) As cordas AB e CD de uma circunferência são perpendiculares em E, interior à circunferência. A reta perpendicular a AC por E intersecta o segmento BD em F. Prove que F é o ponto médio de BD. 5) Sejam A, B e C pontos de uma circunferência tais que os arcos menores AB, BC e CD medem todos 120o. Se P é um ponto em situado no menor arco BC, prove que PA PB PC . 6) Construa o triângulo ABC conhecendo os comprimentos do raio R da circunferência circunscrita e dos lados BC e AC. 7) Sejam ABC um triângulo qualquer e M e N, respectivamente, os pontos onde as bissetrizes externa e interna relativas ao vértice A intersectam a circunferência circunscrita a ABC. Prove que MN é um diâmetro dessa circunferência. 8) Seja ABC um triângulo de ortocentro H e circuncentro O. Prove que a bissetriz interna relativa ao lado BC também bissecta o ângulo HAO. 9) Prove que em todo triângulo os simétricos do ortocentro em relação às retas suportes dos lados do triângulo estão situados sobre a circunferência circunscrita ao triângulo. 10) Sejam ABC um triângulo acutângulo de circuncentro O e H a , H b e H c os pés das alturas relativas aos lados BC, CA e AB, respectivamente. Prove que: a) AHˆ b H c ABˆ C e AHˆ c H b ACˆ B . b) OA H b H c . 11) Seja ABCD um quadrilátero circunscritível. Mostre que os círculos inscritos nos triângulos ABC e ACD e a diagonal AC têm um ponto comum. Problemas suplementares 12) No triângulo ABC o lado BC é fixo e o ângulo A é constante e dado. Determine o LG do ortocentro do triângulo ABC. 13) Duas circunferências cortam-se em A e B. Uma reta variável passa por A corta uma circunferência em M e a outra em N de forma que A está entre M e N. Mostre que o ângulo BMN é constante. 14) O ponto A é variável sobre uma circunferência de diâmetro BC. Prolongue CA de um comprimento AP igual a AB. Determine o LG de P. 15) Construa o triângulo ABC conhecendo a hipotenusa AB 5 cm e sabendo que AB AC 6,2 cm. 16) No triângulo o lado BC é fixo e o ângulo A é constante e igual a 50o. Determine o LG do incentro do triângulo ABC. 17) No triângulo acutângulo ABC, o ângulo A mede 66o. A circunferência de diâmetro BC corta os lados AB e AC em E e D, respectivamente. Determine, nessa circunferência, a medida do arco DE. 18) O lados AB, BC, CD, e DA do quadrilátero circunscritível ABCD medem x, x 1 , 2 x 3 e x 2 , respectivamente. Determine o perímetro desse quadrilátero. 19) Considere o triângulo acutângulo ABC e as alturas AD, BE e CF. O triângulo DEF chama-se triângulo órtico do triângulo ABC. L04-1 Seja H o ortocentro do triângulo ABC. a) Mostre que os quadriláteros BDHF e CDHE são inscritíveis. ˆ F e HD ˆ E são ambos iguais a 90o  b) Mostre que os ângulos HD c) Conclua que H é o incentro do triângulo órtico.