PROBLEMAS RESOLVIDOS DE FÍSICA Prof. Anderson Coser Gaudio Departamento de Física – Centro de Ciências Exatas – Universidade Federal do Espírito Santo http://www.cce.ufes.br/anderson [email protected] Última atualização: 23/07/2005 09:00 H RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, 1996. FÍSICA 1 Capítulo 8 - Conservação da Energia Problemas 01 11 21 31 41 51 61 71 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 04 14 24 34 44 54 64 05 15 25 35 45 55 65 06 16 26 36 46 56 66 07 17 27 37 47 57 67 08 18 28 38 48 58 68 09 19 29 39 49 59 69 10 20 30 40 50 60 70 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES Problemas Resolvidos 02. Alega-se que até 900 kg de água podem ser evaporados diariamente pelas grandes árvores. A evaporação ocorre nas folhas e para chegar lá a água tem de ser elevada desde as raízes da árvore. (a) Suponha que em média a água seja elevada de 9,20 m acima do solo; que energia deve ser fornecida? (b) Qual a potência média envolvida, se admitirmos que a evaporação ocorra durante 12 horas? (Pág. 159) Solução. (a) A água ao ser transportada para o topo da árvore tem sua energia potencial aumentada de UA = 0 até UB = mgh. Ou seja: ΔU = U B − U A B ΔU = mgh O trabalho realizado para elevar a água corresponde à energia que deve ser fornecida: W = −ΔU = − mgh = −81.226,8 J W ≈ −81, 2 kJ (b) W mgh = = 1,88025 W Δt Δt P ≈ 1,88 W P= [Início] 10. Um carro de montanha russa, sem atrito, parte do ponto A (Fig. 25) com velocidade v0. Calcule a velocidade do carro: (a) no ponto B, (b) no ponto C, (c) no ponto D. Suponha que o carro possa ser considerado uma partícula e que permaneça o tempo todo no trilho. (Pág. 159) Solução. Como a única força que realiza trabalho (peso do carrinho) é conservativa, o sistema é conservativo. Portanto é possível aplicar o princípio da conservação da energia mecânica. Vamos supor que na base da montanha russa Ug = 0. (a) E A = EB K A + U gA = K B + U gB 1 2 1 mv0 + mgh = mvB2 + mgh 2 2 ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 2 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES vB = v0 (b) E A = EC K A + U gA = K C + U gC 1 2 1 h mv0 + mgh = mvC2 + mg 2 2 2 v02 + 2 gh = vC2 + gh vC = v02 + gh (c) E A = ED K A + U gA = K D + U gD 1 2 1 mv0 + mgh = mvC2 + 0 2 2 v02 + 2 gh = vC2 vC = v02 + 2 gh [Início] 13. Uma haste delgada de comprimento L = 2,13 m e de massa desprezível pode girar em um plano vertical, apoiada num de seus extremos. A haste é afastada de θ = 35,5o e largada, conforme a Fig. 28. Qual a velocidade da bola de chumbo presa à extremidade inferior, ao passar pela posição mais baixa? (Pág. 160) Solução. Considere o seguinte esquema: ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 3 Problemas Resolvidos de Física θ Lcosθ L A B h Prof. Anderson Coser Gaudio – Depto. Física – UFES vA = 0 m Ug = 0 vB A única força que realiza trabalho neste sistema é o peso da massa m. A tensão na corda, que é radial, é sempre ortogonal aos deslocamentos tangenciais da massa e, portanto, não realiza trabalho. Logo, a energia mecânica do sistema é conservada: E A = EB K A + U gA = K B + U gB 0 + mgh = 1 2 mvB + 0 2 2 g ( L − L cos θ ) = vB2 vB = 2 gL(1 − cos θ ) = 2, 749135" m/s vB ≈ 2, 75 m/s A expressão literal da resposta indica que se 1 − cos θ = 0 implica em vB = 0. Isso ocorre quando cos θ = 1 ou θ = 0o. B [Início] 21. A mola de um revólver de brinquedo tem constante elástica de 7,25 N/cm. O revólver é inclinado de 36,0o acima da horizontal e dispara uma bola de 78 g à altura de 1,9 m acima da boca do revólver. (a) Qual a velocidade de saída da bola? (b) De quanto deve ter sido comprimida inicialmente a bola? (Pág. 161) Solução. Considere o seguinte esquema da situação: C y vC g v0 B h θ θ x A m d k Como o sistema é conservativo, vamos aplicar o princípio da conservação da energia mecânica aos pontos B e C. EB = EC ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 4 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES K B + U gB = K C + U gC No ponto C o projétil tem velocidade vertical igual a zero e velocidade horizontal (que é a velocidade do projétil) igual a v0 cos θ. 1 2 1 2 mv0 + 0 = m ( v0 cos θ ) + mgh 2 2 v02 = v02 cos 2 θ + 2 gh v0 = 2 gh = 10,3874" m/s 1 − cos 2 θ v0 ≈ 10 m/s (b) Aplicando-se o princípio da conservação da energia mecânica aos pontos A e B: E A = EB K A + U gA + U eA = K B + U gB + U eB 1 1 0 − mgd sen θ + kd 2 = mv02 + 0 + 0 2 2 ⎛ 2⎞ ⎜× ⎟ ⎝ k⎠ mv 2 2mg sen θ d− 0 =0 k k As raízes desta equação são: d1 = 0,108364" d2 − d 2 = −0,107123" Como d > 0: d1 ≈ 0,11 m [Início] 23. Uma corrente é mantida sobre uma mesa sem atrito, ficando um quarto do seu comprimento dependurado na borda (veja Fig. 33). O comprimento da corrente é L e sua massa m; que trabalho é necessário para puxar para o tampo da mesa a parte dependurada? (Pág. 161) Solução. Considerando-se que a força F irá puxar a corrente para a direita com velocidade constante, seu módulo será sempre igual ao módulo do peso P(y) da parte suspensa da corrente. Como o peso o peso da parte suspensa da corrente é variável, F também é variável. Seja μ a densidade linear de massa da corrente: ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 5 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES m L m = μL μ= A massa da parte suspensa, que depende do comprimento y (coordenada vertical) vale: m( y ) = μ y Logo: F( y ) = P( y ) = m( y ) g = μ gy Portanto, o trabalho da força F(y) vale: y W = ∫ F( y ) dy = ∫ 0 y0 W= L/4 m y2 μ gydy = g L 2 L/4 = 0 mg L2 . 2 L 16 mgL 32 [Início] 26. Duas crianças brincam de acertar, com uma bolinha lançada por um revólver de brinquedo situado na mesa, uma caixinha colocada no chão a 2,20 m da borda da mesa (veja a Fig. 35). Kiko comprime a mola de 1,10 cm, mas a bolinha cai a 27,0 cm antes da caixa. De quanto deve a mola ser comprimida pela Biba para atingir o alvo? (Pág. 161) Solução. Considere o seguinte esquema: v0 = 0 y x 2 g 1 v d x l Vamos aplicar o princípio da conservação da energia mecânica no lançamento horizontal da bola pela mola: ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 6 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES E0 = E K0 + U e0 = K + U e 1 1 0 + kx 2 = mv 2 + 0 2 2 kx 2 = mv 2 Logo, para o lançamento 1 teremos: kx12 = mv12 (1) Para o lançamento 2, teremos: kx22 = mv22 (2) Dividindo-se (1) por (2): x1 v1 = x2 v2 x2 = v2 x1 v1 (3) Movimento horizontal da bola: x = x0 + vx t Logo, para o lançamento 1 teremos: l − d = v1t (4) Para o lançamento 2, teremos: l = v2t (5) Dividindo-se (5) por (4) e lembrando-se que t tem o mesmo valor nessas equações: l v = 2 l − d v1 (6) Substituindo-se (6) em (3): l x2 = x1 = 1, 25388" cm l −d x2 ≈ 1, 25cm [Início] 27. Um pequeno bloco de massa m escorrega ao longo de um aro como mostrado na Fig. 36. O bloco sai do repouso no ponto P. (a) Qual a força resultante que atua nele quando estiver em Q? (b) A que altura acima do fundo deve o bloco ser solto para que, ao passar na parte mais alta do círculo, esteja a ponto de desprender-se dele? ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 7 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES (Pág. 161) Solução. (a) No ponto Q as forças que atuam no bloco são: Q N y x P P = − mgj (1) N = − Ni (2) Em Q a força normal (N) é a própria força centrípeta do movimento circular de raio R, uma vez que o peso do bloco (P) não possui componente radial. Logo: Fc ,Q = N = mvQ2 R Aplicando-se o princípio da conservação da energia aos pontos P e Q: EP = EQ (3) K P + U gP = K Q + U gQ 0 + mg 5 R = 1 2 mvQ + mgR 2 vQ2 = 8 gR (4) Substituindo-se (4) em (3): N = 8 mg (5) Substituindo-se (5) em (2): N = −8mgi (6) Portanto, a força resultante sobre o bloco no ponto Q vale: R =N+P R = −8mgi − mgj (b) A condição para que no ponto T (topo da trajetória circular) o bloco esteja na iminência de desprender-se da superfície é que a força normal exercida pela superfície sobre o bloco (NT) seja zero. Logo, a força centrípeta do bloco no ponto T será seu próprio peso. Fc ,T = P = mg = vT2 = gR mvT2 R (7) ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 8 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES Aplicando-se o princípio da conservação da energia aos pontos S e T, onde S é o novo ponto da rampa (altura h) de onde será solto o bloco a partir do repouso: ES = ET K S + U gS = KT + U gT 1 2 mvT + mg 2 R 2 Substituindo-se (7) em (8): 1 h = R + 2R 2 5R h= 2 0 + mgh = (8) [Início] 32. O fio da Fig. 38 tem comprimento L = 120 cm e a distância d ao pino fixo P é de 75,0 cm. Quando se larga a bola em repouso na posição mostrada ela oscilará ao longo do arco pontilhado. Qual será a sua velocidade (a) quando alcançar o ponto mais baixo do movimento? (b) quando alcançar o ponto mais elevado depois que o fio encostar no pino? (Pág. 162) Solução. Considere o seguinte esquema: vA = 0 A C d vC r Ug = 0 B vB Aplicando-se o princípio da conservação da energia aos estados A e B: E A = EB K A + U gA = K B + U gB 0 + mgL = 1 2 mvB + 0 2 ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 9 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES vB = 2 gL = 4,8522" m/s vB ≈ 4,85 m/s Esta velocidade é a mesma que seria obtida caso o bloco tivesse caído em queda livre da altura d + r. (b) De acordo com o resultado do problema 33 (Pág. 162), para que a bola faça um círculo completo ao redor do ponto P a distância d deve ser maior do que 3L/5. Como 3L/5 = 72 cm e d = 120 cm, isso implica em d > 3L/5. Portanto, a bola faz uma trajetória circular completa ao redor do pino. Chamando de C o estado do sistema quando a bola está no topo da trajetória circular ao redor do pino: E A = EC K A + U gA = K C + U gC 0 + mgL = 1 2 mvC + mg 2( L − d ) 2 vC2 = 2 gL − 4 g ( L − d ) vC = 2 g (2d − L) = 2, 4261" m/s vC ≈ 2, 43 m/s A expressão literal da resposta indica que se 2d − L = 0 implica em vC = 0. Isso ocorre quando d = L/2. Isto é verdade pois, neste caso, o ponto C (topo da trajetória circular em torno do pino) coincidiria com o pino (mesma altura do ponto A). [Início] 33. Mostre, ainda em relação à Fig. 38, que, para a bolinha do pêndulo completar uma volta inteira em redor do pino deve ser d > 3L/5. (Sugestão: A bolinha deve ter velocidade no alto da trajetória, caso contrário o fio se afrouxa.) (Pág. 162) Solução. Considere o seguinte esquema: ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 10 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES vA = 0 A C vC d r Ug = 0 A condição mínima para que a bola complete uma volta em torno do ponto P é que a tensão na corda seja zero. Nesta condição a força centrípeta do seu movimento circular será o próprio peso da bola. mvC2 Fc = P = mg = r vC2 = gr = g ( L − d ) (1) Aplicando-se o princípio da conservação da energia aos estados A e C: E A = EC K A + U gA = K C + U gC 1 2 mvC + mg 2( L − d ) 2 Substituindo-se (1) em (2): 1 mgL = mg ( L − d ) + mg 2( L − d ) 2 L d L = − + 2 L − 2d 2 2 3L d= 5 0 + mgL = (2) [Início] 35. Um bloco de 3,22 kg parte do repouso e desliza uma distância d para baixo de uma rampa inclinada de 28,0o e se choca com uma mola de massa desprezível, conforme a Fig. 32. O bloco desliza mais 21,4 cm antes de parar momentaneamente ao comprimir a mola, cuja constante elástica é de 427 N/m. (a) Quanto vale d? (b) A velocidade do bloco continua a aumentar durante certo tempo depois depois de chocar-se com a mola. Qual a distância adicional que o bloco percorre antes de alcançar sua velocidade máxima e começar a diminuir? (Pág. 162) Solução. ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 11 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES (a) Considere o seguinte esquema: d (d + l) sen θ l A θ Ug = 0 B Na ausência da força de atrito o sistema é conservativo e a energia mecânica é conservada: E A = EB K A + U gA + U eA = K B + U gB + U eB 1 0 + mg (d + l ) sen θ + 0 = 0 + 0 + kl 2 2 d= kl 2 − l = 0, 4453" m 2mg sen θ d ≈ 0, 45 m (b) Considere o seguinte esquema da nova situação: d (d + l) sen θ A l x θ v(x) Ug = 0 (l - x) sen θ C Para encontrar a velocidade máxima que o bloco atinge após comprimir a mola de uma distância x vamos construir uma função v(x) = f(x) e em seguida encontrar o valor de x que torna dv(x)/dx = 0. Para construir v(x), vamos aplicar a conservação da energia mecânica aos pontos A, de onde o bloco é solto com velocidade nula, e C, o ponto onde a velocidade é máxima. E A = EC ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 12 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES K A + U gA + U eA = K C + U gC + U eC 0 + mg (d + l ) sen θ + 0 = 1 2 1 mv( x ) + mg (l − x ) sen θ + kx 2 2 2 1/ 2 ⎡ kx 2 ⎤ v( x ) = ⎢ 2 g sen θ (d + x) − ⎥ m ⎦ ⎣ O valor de x que torna dv(x)/dx = 0 vale: 1⎡ kx 2 ⎤ = ⎢ 2 g sen θ (d + x ) − ⎥ 2⎣ dx m ⎦ dv( x ) −1/ 2 2kx ⎞ ⎛ . ⎜ 2 g sen θ − ⎟=0 m ⎠ ⎝ (1) A Eq. (1) somente será verdadeira se: 2kx 2 g sen θ − =0 m mg sen θ x= = 0, 03473" m k x ≈ 3,5 cm [Início] 36. Um garoto está assentado no topo de um hemisfério de gelo (Fig. 39). Ele recebe pequeno empurrão e começa a escorregar para baixo. Mostre que ele perde contato com o gelo num ponto situado à altura 2R/3, supondo que não haja atrito com o gelo. (Sugestão: A força normal anula-se quando se rompe o contato com o gelo.) (Pág. 162) Solução. Considere o seguinte esquema: y m A B h R θ vB θ P x Como a única força que realiza trabalho é conservativa (força peso, P), há conservação da energia mecânica do sistema: E A = EB K A + U gA = K B + U gB ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 13 Problemas Resolvidos de Física 0 + mgR = h= R− Prof. Anderson Coser Gaudio – Depto. Física – UFES 1 2 mvB + mgh 2 vB2 2g (1) Na posição B o garoto está na iminência de perder contato com a superfície esférica. Isto significa que a força normal (N) que o gelo exerce sobre ele é zero. Logo, a força centrípeta do seu movimento circular será a componente de P na direção radial (Pr). Fc = Pr mvB2 h = mg sen θ = mg R R vB2 = gh (2) Substituindo-se (2) em (1): gh h h= R− = R− 2g 2 h= 2R 3 [Início] 37. A partícula m da Fig. 40 move-se em um círculo vertical de raio R, no interior de um trilho sem atrito. Quando m se encontra em sua posição mais baixa sua velocidade é v0. (a) Qual o valor mínimo vm de v0 para que m percorra completamente o círculo, sem perder contato com o trilho? (b) Suponha que v0 seja 0,775 vm. A partícula subirá no trilho até um ponto P no qual perde contato com ele e percorrerá o arco indicado aproximadamente pela linha pontilhada. Determine a posição angular θ do ponto P. (Pág. 162) Solução. (a) Considere o seguinte esquema: ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 14 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES B vB P T R m Ug = 0 v0 A A condição mínima para que a partícula complete uma volta sem perder contato com o trilho é que sua força normal (N) seja zero no ponto mais alto de sua trajetória circular. Nesse ponto sua força centrípeta será o próprio peso da partícula (P). Fc = P = mg mvB2 = mg R vB2 = gR (1) Aplicando-se o princípio da conservação da energia mecânica aos estados A e B: E A = EB K A + U gA = K B + U gB 1 2 1 mv0 + 0 = mvB2 + mg 2 R 2 2 Substituindo-se (1) em (2): (2) v02 = gR + 4 gR v0 = 5 gR (3) (b) Considere o seguinte esquema: vP P Pr P θ R m Ug = 0 v0 A No ponto P a partícula perde contato com a superfície, o que torna N nula. Logo, a força centrípeta do seu movimento circular será a componente de P na direção radial (Pr). Fc = Pr mvP2 = mg sen θ R ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 15 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES vP2 = gR sen θ (4) Aplicando-se o princípio da conservação da energia mecânica aos estados A e P: E A = EP K A + U gA = K P + U gP 1 1 2 m ( 0, 775v0 ) + 0 = mvP2 + mg ( R + R sen θ ) 2 2 0, 7752 v02 = vP2 + 2 gR + 2 gR sen θ (5) Substituindo-se (3) e (4) em (5): 0, 7752.5 gR = gR sen θ + 2 gR + 2 gR sen θ 5.0, 7752 = 2 + 3sen θ ⎡1 ⎤ 5.0, 7752 − 2 ) ⎥ = 19,5345"D ( ⎣3 ⎦ θ = sen −1 ⎢ θ ≈ 19,5D [Início] 56. Um pequeno objeto de massa m = 234 g desliza em um trilho que tem a parte central horizontal e as extremidades são arcos de círculo (veja Fig. 46). A parte horizontal mede L = 2,16 m e nas porções curvilíneas não há atrito. O objeto é solto no ponto A, situado à altura h = 1,05 m acima do trecho horizontal, no qual ele perde 688 mJ de energia mecânica, devido ao atrito. Em que ponto o objeto irá parar? (Pág. 164) Solução. Considere o seguinte esquema da situação: A h Ug = 0 B D μc C L Assim que a partícula é solta, sua energia potencial gravitacional inicial UA é convertida em energia cinética. Essa energia vale: U A = mgh Como a parte curva não apresenta atrito, ao chegar ao ponto B sua energia cinética será: K B = U A = mgh (1) ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 16 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES Na parte plana o atrito começará a dissipar a energia mecânica da partícula, que está totalmente na forma de energia cinética. Devemos verificar se a partícula pára antes do ponto C ou se o ultrapassa, subindo a rampa oposta. Cada vez que a partícula atravessa a parte plana a força de atrito (f) realiza um trabalho W. ΔE = Wat K C − K B = Wat (3) Substituindo-se (1) em (2): K C = mgh + Wat Como K é sempre positivo, temos que se mgh + Wat > 0, o bloco vai subir a rampa oposta. Na verdade, mgh + Wat = 1,722317 J (lembre-se que Wat < 0). Portanto a partícula atravessa a região central e sobe a rampa oposta. Cada vez que a partícula atravessa a parte plana ela perde Wat. O número de vezes que ela consegue atravessar a parte plana (n) é dado por: mgh + nWat ≥ 0 n≥− mgh = 3,50336" Wat Ou seja, a partícula atravessa três vezes a parte central plana e pára aproximadamente em L/2 na quarta vez em que tenta atravessá-la. [Início] 57. Dois picos nevados têm altitude de 862 m e 741 m, respectivamente, acima do vale entre eles. Uma pista de esqui estende-se do cimo do pico mais alto ao do mais baixo, conforme a Fig. 47. (a) Um esquiador parte do repouso no pico mais elevado. Qual sua velocidade ao chegar ao pico mais baixo se ele deslizou sem impulsionar-se com os bastões? Suponha que o solo esteja gelado e por isso não há atrito. (b) Após uma nevada, uma esquiadora de 54,4 kg faz o mesmo trajeto, também sem utilizar os bastões e por pouco não consegue alcançar o pico mais baixo. De quanto aumenta a energia interna dos esquis e da neve sobre a qual ela desliza? (Pág. 164) Solução. (a) Supondo que não haja atrito, as únicas forças que agem sobre o esquiador são o peso e a normal. Como esta é sempre ortogonal ao deslocamento do esquiador, não realiza trabalho. Logo, a força peso (força conservativa) é a única força que realiza trabalho, o que torna o sistema conservativo. Podemos aplicar o princípio da conservação da energia mecânica: E1 = E2 K1 + U g1 = K 2 + U g 2 0 + mgh1 = 1 2 mv2 + mgh2 2 ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 17 Problemas Resolvidos de Física Prof. Anderson Coser Gaudio – Depto. Física – UFES 2 gh1 = v22 + 2 gh2 v2 = 2 g ( h1 − h2 ) = 48, 7239" m/s v2 ≈ 48, 7 m/s (b) Agora há atrito entre o esqui e a neve e o trabalho realizado pelo atrito será igual à variação da energia mecânica do sistema. Wat = ΔE = E2 − E1 = ( K 2 + U g 2 ) − ( K1 + U g1 ) Wat = ( 0 + mgh2 ) − ( 0 + mgh1 ) = mg ( h2 − h1 ) = −64.573,344 J O sinal negativo do trabalho indica que o sistema perdeu essa quantidade de energia, que foi convertida em calor que aquece a neve e os esquis. Logo, o aumento da energia interna observado da neve e dos esquis é: ΔEint,neve = −Wat,esquiador = 64.573,344 J ΔEint,neve ≈ 64, 6 kJ [Início] ________________________________________________________________________________________________________ a Cap. 8 – Conservação da Energia Resnick, Halliday, Krane - Física 1 - 4 Ed. - LTC - 1996. 18