LISTA 5 - Solução

Propaganda
LISTA 5 - Solução
1. O motorista de uma viatura militar foi encarregado de transportar 15
soldados para um quartel situado a 65 km de distância, mas a viatura de que
dispunha, só podia transportar o motorista e mais 5 pessoas. Para cumprir o
mais rápido possível essa missão decidiu proceder da seguinte forma: 10
iniciavam a viagem caminhando à pé; os outros 5 eram levados até um
determinado ponto, prosseguindo depois a viagem à pé; a viatura voltava
para trás até encontrar os 10 soldados que tinham iniciado a viagem à pé;
transportava então 5 desses 10 soldados até encontrar os 5 que tinha
transportado inicialmente; voltava para trás até encontrar os últimos 5
soldados, e finalmente a viatura e os 10 soldados que vinham à pé,
chegavam simultaneamente ao seu destino. Quanto tempo demorou a
viagem, considerando que a viatura desenvolveu uma velocidade média de
40 km/h e andando a pé (tranqüilos) os soldados conseguiram uma boa
marcha de 5 km/h?
Solução:
Seja x o percurso, a pé, de cada soldado.
Assim o percurso da viatura no sentido início/destino será dado por 65 – x e o percurso da viatura
3x
.
no retorno é 65 –
2
3x
Enquanto a viatura percorreu a distância da partida até o ponto A(65 – x + 65 –
), alguns
2
x
soldados percorreram ; como os espaços percorridos são proporcionais às velocidades, temos:
2
3x
65 − x + 65 −
Vviatura
40
2 ⇒ 260 − 5 x = 8 ⇒ x = 20 km.
=
=8=
x
Vsoldados
5
x
2
Com relação aos tempos, teremos:
45
• Para os soldados: 65 – 20 = 45 km de viatura; tempo:
= 1,125 h
40
20
20 km a pé; tempo:
= 4h
5
Total: 5,125 h.
• Para a viatura:
45 + 35 + 45 + 35 + 45 = 205 km;
205
tempo:
= 5,125 h
40
Logo, o tempo da viagem foi de 5,125 h ou 5h 7min 30 s.
2. Em um quadrado mágico, a soma dos números de cada linha, coluna ou
diagonal é sempre a mesma. Complete o quadrado mágico a seguir.
1 14
26
13
Solução:
Denominando por x, y e z, conforme abaixo, teremos:
y
z
1 14 x
26
13
1 + 14 + x = 1 + 26 + y ⇒ x = 12 + y
26 + 14 + z = 13 + 14 + y ⇒ y = 13 + z
13 + x + z = 1 + 14 + x ⇒ z = 2
Logo, y = 15 e x = 27.
3. Considere os números a = 2 700 , b = 11200 , c = 5300. Coloque em ordem
crescente os três números dados.
Solução:
Temos:
( ) = 128
= (11 ) = 121
= (5 ) = 125
a = 2 700 = 2 7
100
b = 11200
2 100
100
3
c = 5 300
Logo, b < c < a
100
100
100
4. Uma rampa de inclinação constante, como a do Palácio do Planalto em
Brasília, tem 4 metros de altura na sua parte mais alta. Uma pessoa, tendo
começado a subi-la, nota que após caminhar 12,3 metros sobre a rampa está
a 1,5 metros de altura em relação ao solo. Quantos metros a pessoa ainda
deve caminhar para atingir o ponto mais alto da rampa?
Solução:
4
12,3
1,5
x + 12,3 4
⇒
=
12,3
1,5
1,5x + 18,45 = 49,2 ⇒
1,5x = 30,75 ⇒
x = 20,5
2
3
4
2008
2009
5. Qual é a soma dos algarismos do número 2 + 2 + 2 2 + 2 3 + ⋅ ⋅ ⋅ + 2 2007 + 2 2008 ?
2
Solução:
2+
2 2 23 2 4
2 2008 2 2009
+ 2 + 3 + ⋅ ⋅ ⋅ + 2007 + 2008
2 2
2
2
2
2
2
2
= 2 + 2 + 2 + ... + 2 = 2 ⋅ 2009 = 4018.
2009 vezes
Soma dos algarismos: 4 + 0 + 1 + 8 = 13
2
Download