Aula 7 - Instituto de Física / UFRJ

Propaganda
IF-UFRJ
Elementos de Eletrônica Analógica
Mestrado Profissional em Ensino de Física
Prof. Antonio Carlos Santos
Aula 7: Polarização de Transistores
Este material foi baseado em livros e manuais existentes na literatura
(vide referências) e na internet e foi confeccionado exclusivamente
para uso como nota de aula para as práticas de Laboratório de Física
Moderna Eletrônica. Pela forma rápida que foi confeccionado, algumas
partes foram extraídas quase verbatim de outros autores citados na
lista de referências. Trata-se de um texto em processo de constante
modificação. Por gentileza, me informe os erros que encontrar.
Teoria – O Transistor é basicamente constituído de três camadas de materiais semicondutores, formando as junções
NPN ou PNP. Essas junções recebem um encapsulamento adequado, conforme o tipo de aplicação e a ligação de três
terminais para conexões externas.
emissor
coletor
emissor
N
P
N
P
N
P
coletor
base
base
A corrente de emissor (IE) é composta pela soma das correntes de base (IB) e de coletor (IC). Analogamente,
observamos que, a tensão entre coletor-emissor (VCE) é composta pela soma das tensões base-emissor (VBE) e base –
coletor (VCB). Portanto, podemos escrever
IE = IB + IC
VCE = VBE +VBC (NPN)
SIMBOLOGIA
NPN
PNP
coletor
coletor
base
base
emissor
emissor
Sem polarização, uma junção NPN ou PNP, apresenta duas barreiras de potencial, idênticas àquela vista na
junção PN de um diodo semicondutor. Para movermos os elétrons e lacunas nos materiais, é necessária a colocação
de baterias que poderão deixar cada junção direta ou reversamente polarizada. Vamos a seguir, analisar todas as
possibilidades de polarização, destacando o caso mais vantajoso :
19
o
1 caso – as duas junções reversamente polarizadas
N
P
N
N
P
P
Neste caso, não há circulação de corrente, pois as duas junções estão reversamente polarizadas, deixado o dispositivo
em situação de corte.
o
2 caso – as duas junções diretamente polarizadas
N
P
N
P
N
P
Neste caso, circula corrente pelas duas junções, estando o dispositivo em situação de saturação .
o
3 caso – uma junção diretamente polarizada e a outra reversamente polarizada
N
P
N
P
N
P
Neste caso, circula corrente por ambas as junções, apesar da polarização reversa, pois aqui, ocorre o fenômeno
denominada de efeito transistor . Devido a esse fenômeno, utilizaremos este caso para fins de polarização.
Uma característica importante de um transistor é que ele controla a corrente que circula através dele. A
maior parte da corrente circula do emissor para o coletor (sentido real dos elétrons), com a base agindo como
elemento de controle. Com uma polarização direta aplicada à junção emissor-base, a base começa a drenar uma
pequena corrente. Uma vez que a corrente de base foi iniciada, a maioria dos elétrons passa através da região
estreita da Bse e fica sob a influência da região altamente positiva (em um transistor NPN) reversamente polarizada
do coletor. A figura abaixo ilustra como o transistor funciona como controlador ou chave: Se a corrente da base IB for
nula, a chave estará fechada e portanto não haverá corrente do coletor para a o emissor. Se a corrente da base for
não nula, então haverá um fluxo do coletor para o emissor (sentido convencional).
Três Configurações de Circuitos Amplificadores com Transistor
Existem três configurações básicas de circuitos amplificadores: emissor comum, coletor comum e base comum. Visto
que o transistor possui apenas três terminais, um deve ser comum aos outros dois para as conexões de entrada e
20
saída. A figura abaixo mostra as três configurações. Por ora, cada circuito possui somente os componentes básicos. Os
diagramas não mostram os valores dos resistores e capacitores de polarização.
A) Configuração emissor comum (circuito equivalente CA). B) Configuração coletor comum (circuito equivalente
CA). Configuração base comum (circuito equivalente CA).
A configuração emissor comum é a configuração mais largamente empregada. O sinal de entrada é aplicado
entre a base e o emissor, enquanto o sinal de saída é retirado entre o coletor e o terra. Já que o emissor está
conectado ao terra CA, ele funciona como um ponto de referência comum para a entrada e a saída. Duas coisas para
se lembrar sobre o circuito emissor comum são: a) um circuito emissor comum pode prover ganho de corrente,
tensão e potência; b) o circuito emissor comum possui uma impedância de entrada média e uma impedância de saída
alta.
Para melhor compreensão, vamos utilizar a figura abaixo, onde temos a polarização do terceiro caso com a
estrutura interna das junções mais detalhadas.
NPN
VCB
IC
VBB
RC
VCB
IB
RB
PNP
VCE
VCC
RB
RC
VCE
IB
VBE
IE
IC
VBE
IE
VCC
VBB
Define-se polarização como sendo o estabelecimento das correntes de coletor, de base e da tensão VCE, ou seja, do
ponto de trabalho do transistor Para melhor aproveitamento, devemos polarizar a junção base-emissor diretamente e
a junção base-coletor reversamente. Para tanto, utilizaremos no circuito duas baterias, VBB e VCC, resistores
limitadores de corrente, conforme mostra a figura abaixo.
Considerando a figura acima, vamos escrever as equações das malhas de entrada e de saída
21
Entrada :
VBB = RB IB + VBE
Saída :
VCE = RCIC + VCE
Para dimensionarmos RB e RC em função de valores pré-estabelecidos de VBB, VCC, IB, VCE e dos parâmetros do
transistor, nas equações de malha isolamos nesse valores :
onde :
RB =
V BB − V BE
IB
RC =
VCC − VCE
IC
I C = βI B e I C = αI E
α=
β
β +1
β=
e
α
1−α
Na pratica, não é viável a utilização de duas baterias, sendo que para eliminarmos uma delas, formaremos divisores
de tensão que equivalem a nível de polarização às condições pré-estabelecidas. O circuito equivalente com a bateria
VBB eliminada, é visto na figura abaixo.
RC
RB
VCC
RE
Uma melhor solução para o problema da instabilidade principalmente com a temperatura, é polarizarmos o
transistor, utilizando o circuito visto na figura abaixo, denominado polarização por divisor de tensão na base.
IB1
RC
RB1
IC
IB
IB2
RB2
VCC
IE
RE
22
O divisor de tensão na base, se dimensionado de maneira conveniente, fixará VRB2
IB ≤
I B2
, pois IB = IB1 – IB2
10
Transistor como amplificador
O transistor funciona como um controlador. Transistores que funcionam como controladores também são chamados
de amplificadores. A figura abaixo ilustra como usar o transistor como amplificador: Antes do microfone ser
conectado ao circuito, nada acontece. O transistor irá simplesmente bloquear o fluxo de elétrons da bateria para o
alto falante. De modo a deixar a corrente fluir, devemos drenar uma corrente de elétrons da base. Isto se faz quando
conectamos o microfone conforme ilustrado abaixo. Note que o microfone também está conectado ao emissor, de
modo a permitir que os elétrons drenados da base tenham para onde fluir (o circuito deve ser sempre fechado !).
Teste de Transistores usando multímetro analógico
Este é o melhor tipo de multímetro para testar transistores. Tem dois testes que podemos fazer com este tipo de
multímetro.
Na escala ×1 – antes é necessário saber que o transistor NPN o ponteiro mexe com a ponta preta na base e no PNP o
ponteiro mexe com a vermelha na base. Coloque a ponta preta fixa num terminal qualquer e a vermelha nos dois
restantes. Se o ponteiro mexer nos dois terminais e parar na mesma posição, o transistor está bom, onde está a ponta
preta é a base e o transistor é NPN. Agora se o ponteiro não mexer igual nos dois, fixe a preta em outro terminal e
assim ate encontrar a base (terminal que o ponteiro mexe igual com os outros dois). Se não encontra a base com a
preta, tente com a vermelha. Se achar a base com a vermelha, o transistor é PNP.
Teste de Transistores usando multímetro digital
Use a escala com o símbolo do diodo e da mesma forma que o multímetro analógico procure um terminal que indica
aproximadamente o mesmo valor com os dois restantes. Este terminal é a base. Se acharmos a base com a ponta
vermelha, o transistor é NPN e se acharmos com a preta, ele é PNP. Note que a indicação é o contrario do multímetro
analógico. O terminal que indicar maior resistência com a base é o emissor.
23
Há uma outra maneira de testar o transistor: conecte as ponteiras do ohmímetro ao emissor e ao coletor, molhe a
ponta do seu dedo e o coloque entre o coletor e a base. Se o transistor está bom o ohmímetro indicará uma queda na
resistência. O dedo molhado fornece uma resistência alta entre o coletor e a base. Isto permite uma corrente de
polarização direta aplicada na base que ‘liga’ o transistor.
Parte prática
1- Com o transistor disponível em sua bancada, indentifique os terminais (base, emissor e coletor), identifique
se é NPN o PNP. Meça com o ohmímetro e anote no quadro abaixo, a resistência direta e reversa entre baseemissor e entre base-coletor
Base-emissor
Base-coletor
R direta
R reversa
Anotações:
2- Monte os circuitos das figuras abaixo. Meça e anote nos quadros os valores de IB, IC, IE, VBE e VCE
IB(µA)
150 kΩ
IC(mA)
IE(mA)
VBE(V)
VCE(V)
330 Ω
12 V
24
330 Ω
150 kΩ
IB(µA)
IC(mA)
IE(mA)
VBE(V)
VCE(V)
IB(µA)
IC(mA)
IE(mA)
VBE(V)
VCE(V)
12 V
100 Ω
330 Ω
5,6 kΩ
12 V
1,2 kΩ
100 Ω
Anotações:
Questões
1 – Calcule os valores de β e α, utilizando os valores de IB, IE e IC, obtidos nas tabelas acima. Calcule os valores de α e β
médios.
Lista de exercícios para casa
1 – Dimensione RB, RC e RE para polarizar o transistor do circuito da figura abaixo, conforme os dados fornecidos : β =
200, VBE= 0,7 V, VCC = 15 V, VCE= VCC/2, VRE = VCC/10, IC = 30 mA
RC
RB
VCC
RE
2 - Dimensione RB1, RB2, RC e RE para polarizar o transistor da figura abaixo, conforme os dado fornecidos : : β = 350,
VBE= 0,7 V, VCC = 15 V, VCE= VCC/2, VRE = VCC/10, IC = 5 mA, IB = IB2/2
25
RB1
RC
VCC
RB2
RE
Referências
[1] Laboratório de Eletricidade e Eletrônica , F. G. Capuano e M. A. M. Marino. Ed. Érica
[2] Testando Componentes Eletrônicos, L. C. Burgos, Antena Edições Técnicas Ltda.
26
Download