Conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades. E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos Naturais (N) N = {0,1,2,3,4,...} Problemas do conjunto: Subtração: 3 – 4 = ? Divisão: 1 : 2 = ? Como o zero originou-se depois dos outros números e possui algumas propriedades próprias, algumas vezes teremos a necessidade de representar o conjunto dos números naturais sem incluir o zero. Para isso foi definido que o símbolo * (asterisco) empregado ao lado do símbolo do conjunto, iria representar a ausência do zero.Veja o exemplo abaixo: Inteiros (Z) Z = {...,-2,-1,0,1,2,...} Problema no conjunto: Divisão: 1 : 2 = ? Assim como no conjunto dos naturais, podemos representar todos os inteiros sem o ZERO com a mesma notação usada para os NATURAIS. Inteiros positivos (sem o zero) Inteiros negativos (sem o zero) Racionais (Q). Q = {a/b | a, b Z e b 0}. Todo número que pode ser escrito em forma de fração de numerador e denominador inteiro. Exemplos: - Decimais finitos; - Dízimas periódicas; - Raízes exatas; Problema no Conjunto: Como escrever em forma de fração? 3,14159265... Este não é um número Racional, pois possui infinitos algarismos após a vírgula (representados pelas reticências) 2,252 Este é um número Racional, pois possui finitos algarismos após a vírgula. 2,252525... Este número possui infinitos números após a vírgula, mas é racional, é chamado de dízima periódica. Reconhecemos um número destes quando, após a vírgula, ele sempre repetir um número (no caso 25). = {Todos os racionais sem o zero} = {Todos os racionais NÃO NEGATIVOS} = {Todos os racionais NÃO NEGATIVOS sem o zero, ou seja, os positivos} = {Todos os racionais NÃO POSITIVOS} = {Todos os racionais NÃO POSITIVOS sem o zero, ou seja, os negativos} Há quatro formas de se apresentarem os números racionais: Frações (próprias ou impróprias), números mistos (que é uma variação das frações impróprias), números decimais de escrita finita e, por fim, as dízimas, que são números decimais em cuja escrita aparecem períodos numéricos infinitos. Eis alguns exemplos: Fração: ¾ Numeral misto: 1 ½ Números decimais de escrita finita: 8,35 Dízimas: 8,2323...; 1,23555... ; 7,23965965965...; Irracionais (I). O "IRRACIONAIS“ é formado por todos os números que, ao contrário dos racionais, NÃO podem ser representados por uma fração de números inteiros. São eles: Raízes inexatas; Decimais infinitos e não periódicos; = 3,14...; e = 2,72... . Com o estudo contínuo dos elementos da matemática, os matemáticos se depararam com a necessidade de calcular o comprimento de uma circunferência; e com cálculos contínuos, notaram que um número se repetia para qualquer que fosse a circunferência, número este que outrora foi denominado de número pi (π). Esse número é encontrado através da razão do comprimento pelo diâmetro da circunferência. Veremos alguns exemplos de números irracionais e notaremos que a sua parte decimal não possui nenhuma estrutura que possa ser fundamentada em forma de fração, assim como ocorre em frações periódicas. Constantes irracionais ou números transcendentais: Números irracionais obtidos pela raiz quadrada de um número: Estes são números irracionais, cujo valor da última casa decimal nunca saberemos. Reais (R). o conjunto dos números Reais é formado por todos os números Racionais junto com os números Irracionais, portanto: R= Q I R N Z Q I