FISIOLOGIA DA MEMBRANA PLASMÁTICA Estudos químicos

Propaganda
FISIOLOGIA DA MEMBRANA PLASMÁTICA
Estudos químicos diretos e a análise da permeabilidade celular mostram que as membranas tem composição lipoprotéica, ou seja, são
formadas por gorduras e por proteínas. Os lipídios possuem, em suas moléculas, uma extremidade hidrofóbica com aversão pela água, e
outra extremidade hidrofílica, com afinidade pela água. A membrana plasmática possui uma camada bimolecular de lipídios, com as
porções hidrofóbicas das suas moléculas voltadas umas para as outras, e as porções hidrofílicas voltadas para as superfícies interna e
externa da membrana. Mergulhadas nesse "tapete de gordura", estão as moléculas de proteínas, ora expostas na face externa, ora na face
interna ou em ambas as faces da membrana plasmática. Esse modelo molecular, proposto por Singer e Nicholson, explica muitas das
propriedades físico-químicas e biológicas das membranas celulares, além de apresentar correspondência com a observação microscópica
da membrana.
1. As Trocas entre os Meios Intra e Extracelular
A capacidade da membrana de ser ou não atravessada por determinadas substâncias corresponde à sua permeabilidade. As membranas
são classificadas em quatro categorias, de acordo com a sua permeabilidade:
a. Membranas permeáveis: são aquelas que permitem a passagem, através delas, tanto dos solutos como do solvente;
b. Membranas impermeáveis: não permitem a passagem nem dos solutos e nem do solvente;
c. Membranas semipermeáveis: são as que permitem a passagem do solvente, mas impedem a passagem dos solutos.
d. Membranas seletivamente permeáveis: permitem a passagem do solvente e também de alguns tipos de solutos. Os fatores que
determinam quais são os solutos capazes de atravessar a membrana ou não são o tamanho da molécula, sua carga elétrica, sua
polaridade, etc. As membranas celulares se enquadram nessa categoria.
A passagem de partículas através das membranas é aleatória e sempre acontece em maior fluxo do local de maior concentração para o
local de menor concentração. Esse tipo de movimento é chamado a favor do gradiente de concentração. Esse movimento a favor do
gradiente de concentração acontece até que se estabeleça igualdade de concentração entre os dois meios, ou seja, até que a distribuição
de partículas seja uniforme.
Os principais mecanismos de passagem de substâncias através das membranas são o transporte passivo, o transporte ativo e os
transportes de massa.
2. Transporte Passivo
Ocorre sempre a favor do gradiente, no sentido de igualar as concentrações nas duas faces da membrana. Não envolve nenhum gasto de
energia.
A - Osmose
A água se movimenta livremente através das membranas celulares. Esse movimento se faz do local de menor
concentração de solutos (pois é o local de maior concentração de água!) para o local de maior concentração. A pressão com a qual a água
é forçada a atravessar a membrana é conhecida por pressão osmótica.
A osmose não é influenciada pela natureza do soluto, mas pela quantidade de partículas de soluto existentes em uma solução. Quando
duas soluções contêm a mesma quantidade de partículas por unidade de volume, mesmo que não sejam partículas do mesmo tipo, são
chamadas soluções isotônicas. Caso estejam separadas por uma membrana semipermeável, ou por uma membrana seletivamente
permeável, o fluxo de água nos dois sentidos será exatamente igual, e podemos dizer que o fluxo global de água é nulo.
Quando se comparam soluções com diferentes quantidades de partículas por unidades de volume, a de maior concentração de partículas
é hipertônica, e exerce maior pressão osmótica. A solução de menor concentração de partículas é hipotônica, e a sua pressão osmótica
é menor. Separadas por uma membrana semipermeável, há passagem de água da solução hipotônica em direção à solução hipertônica.
A osmose pode provocar alterações na forma das células. Uma hemácia humana, célula que tem o formato de um disco bicôncavo, é
isotônica em relação a uma solução de cloreto de sódio a 0,9% em massa. Essa solução é conhecida como solução fisiológica, e é
empregada para hidratação endovenosa, para lavagem de ferimentos e de lentes de contato, etc. Se uma hemácia for colocada em um
meio de concentração superior a essa (uma solução hipertônica, portanto), perde água e murcha. Se estiver em uma solução mais diluída
(solução hipotônica), absorve água por osmose. Se a entrada de água for intensa, a célula se distende até se romper. O rompimento das
hemácias se chama hemólise.
Existem protozoários, animais formados por uma única célula, que vivem em água doce, cuja concentração de partículas é inferior à do
meio intracelular. Como esses organismos evitam a explosão das suas células? Graças à presença de uma "bomba" chamada vacúolo
pulsátil ou vacúolo contrátil. Quando há entrada de água por osmose, em quantidade superior àquela que a célula consegue tolerar, o
vacúolo pulsátil bombeia o excesso de água para fora da célula.
Protozoários marinhos não possuem vacúolo pulsátil, uma vez que o meio externo é hipertônico em relação ao seu citoplasma, e a
tendência é de saída de água por osmose.
B - Difusão simples
A passagem de substâncias relativamente grandes através da membrana se dá por intermédio de poros que ela possui, e que põe
diretamente em contato o hialoplasma e o meio extracelular.
A velocidade com a qual determinadas moléculas se difundem pelas membranas das células depende de alguns fatores, anteriormente
citados: tamanho das moléculas, carga elétrica, polaridade, etc.
C - Difusão facilitada
Algumas substâncias entram nas células a favor do gradiente de concentração e sem gasto de energia, mas com uma velocidade muito
maior do que a que seria esperada se a entrada ocorresse por difusão simples. Nas células, isso acontece, por exemplo, com a glicose,
com os aminoácidos e com algumas vitaminas.
As substâncias "facilitadoras", presentes nas membranas celulares, são as permeases, e têm natureza protéica.
3. Trasnporte Ativo
Nesse mecanismo de transporte, atuam moléculas carregadoras que também são proteínas. Ocorre contra o gradiente de concentração e
com gasto de energia.
Os mecanismos de transporte ativo agem como "portas giratórias", que recolhem uma substância em uma das faces da membrana e a
soltam na outra face.
Alguns mecanismos realizam uma troca de partículas, levando uma de dentro para fora e outra de fora para dentro. Um exemplo desse tipo
de transporte é a bomba de sódio e de potássio, que recolhe um íon sódio na face interna da membrana e o solta no lado de fora da
célula. Na face externa, prende-se a um íon potássio, que é lançado no meio intracelular. Esse mecanismo permite que a célula mantenha
alta concentração de potássio dentro da célula e alta concentração de sódio no meio extracelular.
A energia empregada pelos mecanismos de transporte ativo vem do ATP, produzido nas mitocôndrias, durante a respiração celular.
4. Transportes de Massa
As células são capazes de englobar grandes quantidades de materiais "em bloco". Geralmente, esses mecanismos são empregados na
obtenção de macromoléculas, como proteínas, polissacarídeos, ácidos nucléicos, etc. Essa entrada de materiais em grandes porções é
chamada endocitose. Esses processos de transporte de massa sempre são acompanhados por alterações morfológicas da célula e de
grande gasto de energia.
A endocitose pode ocorrer por dois mecanismos fundamentais:
As células são capazes de englobar grandes quantidades de materiais "em bloco". Geralmente, esses mecanismos são empregados na
obtenção de macromoléculas, como proteínas, polissacarídeos, ácidos nucléicos, etc. Essa entrada de materiais em grandes porções é
chamada endocitose. Esses processos de transporte de massa sempre são acompanhados por alterações morfológicas da célula e de
grande gasto de energia.
A endocitose pode ocorrer por dois mecanismos fundamentais:
A - Fagocitose
É o processo pelo qual a célula engloba partículas sólidas, pela emissão de pseudópodos.
Nos protozoários, a fagocitose é uma etapa importante da alimentação, pois é a forma pela qual esses organismos unicelulares
conseguem obter alimentos em grandes quantidades de uma só vez. Nos metazoários, animais formados por numerosas células, a
fagocitose desempanha papéis mais específicos, como a defesa contra microorganismos e a remodelagem de alguns tecidos, como os
ossos.
B - Pinocitose
Processo pelo qual a célula engloba gotículas de líquido ou partíiculas de diâmetro inferior a 1 micrômetro.
Depois de englobadas por fagocitose ou por pinocitose, as substâncias permanecem no interior de vesículas, fagossomos ou
pinossomos. Nelas, são acrescidas das enzimas presentes nos lisossomos, formando o vacúolo digestivo. Voltaremos ao assunto
quando estudarmos a digestão celular.
7. Diferenciações da Membrana Plasmática
No desempenho de funções específicas, surgem diferenciações da membrana plasmática de algumas células. passamos a apresentar
algumas dessas diferenciações.
a) Microvilosidades: são expansões semelhantes a dedos de luvas, que aumentam a superfície de absorção das células que as
possuem. São encontradas nas células que revestem o intestino e nas células dos túbulos renais.
b) Interdigitações: são conjuntos de saliências e reentrâncias das membranas de células vizinhas, que se encaixam e facilitam as trocas
de substâncias entre elas. São observadas nas células dos túbulos renais.
c) Desmossomos: são placas arredondadas formadas pelas membranas de células vizinhas. O espaço entre as membranas é ocupado
por um material mais elétron-denso que o glicocálix.
Na sua face interna, inserem-se filamentos do citoesqueleto que mergulham no hialoplasma. É o local de "ancoragem" dos componentes
do citoesqueleto, e de forte adesão entre células vizinhas.
d) Plasmodesmos: através de perfurações na parede celular, passam "pontes" que colocam em contato direto o citoplasma de duas
células vegetais vizinhas, permitindo o livre trânsito de substâncias entre elas. As células dos vasos condutores de seiva elaborada (ou
orgânica) possuem numerosos plasmodesmos, pelos quais a seiva flui.
Os orifícios da parede celular, pelos quais passam essas pontes citoplasmáticas, são as pontuações.
1) O modelo abaixo representa a configuração molecular da membrana celular, segundo Singer e Nicholson. Acerca do modelo proposto,
assinale a alternativa incorreta.
a) O algarismo 1 assinala a extremidade polar (hidrófila) das moléculas lipídicas.
b) O algarismo 2 assinala a extremidade apolar (hidrófoba) das moléculas lipídicas.
c) O algarismo 3 assinala uma molécula de proteína.
d) O algarismo 4 assinala uma molécula de proteína que faz parte do glicocálix.
e) O algarismo 5 assinala uma proteína extrínseca à estrutura da membrana.
2) Na mucosa intestinal, as células apresentam grande capacidade de absorção devido à presença de:
a) desmossomas
b) vesículas fagocitárias
c) microvilosidades
d) flagelos
e) cílios
3) Na maioria das células vegetais, encontram-se pontes citoplasmáticas que estabelecem continuidade entre células adjacentes. Estas
pontes são denominadas:
a) microtúbulos.
b) polissomos.
c) desmossomos.
d) microvilosidades.
e) plasmodesmos.
4) Um peixe tipicamente marinho é introduzido em um tanque contendo água doce. Analisando o balanço osmótico, podemos dizer que:
a) o corpo do peixe perde água para o meio externo.
b) a perda de água do corpo do peixe para o meio externo é impedida pela presença de escamas e muco.
c) a água do meio externo, menos concentrada, penetra no corpo do peixe que é mais concentrado.
d) a água do meio externo, mais concentrada, penetra no corpo do peixe que é menos concentrado.
e) o corpo do peixe entra automaticamente em equilíbrio com a água circundante, evitando a entrada ou a saída de água.
5) No desenho abaixo, observamos três tubos de ensaio contendo soluções de diferentes concentrações de NaCl e as modificações
sofridas pelas hemácias presentes em seu interior. Em relação a este desenho, assinale a alternativa correta:
a) Em 1 a solução é isotônica em relação à hemácia; em 2 a solucão é hipertônica em relação à hemácia e em 3 a solução é hipotônica à
hemácia.
b) As hemácias em 1 sofreram alteração de volume, porém em 2 ocorreu plasmólise e em 3 turgência.
c) Considerando a concentração isotônica de NaCl = 0,9 %, a solução 2 certamente possui uma concentração de NaCl inferior a 0,9 % e a
solução 3, uma concentraçõ de NaCl superior a 0,9 %.
d) As hemácias do tubo 2 sofreram perda de água para a solução, enquanto as do tubo 3 aumentaram seu volume, depositando-se no
fundo.
e) A plasmólise sofrida pelas hemácias do tubo 2 ocorreu em razão da perda de NaCl para o meio.
Download