Aula Avançada - Equações de Maxwell - 02

Propaganda
Visualização do documento
Aula Avançada - Equações de Maxwell.doc
(39 KB) Baixar
EQUAÇÕES DE MAXWELL
LEIS EXPERIMENTAIS
Figura 12.1
Vimos e estudamos quatro leis experimentais sobre fenômenos elétricos e magnéticos,
reproduzidas na tabela abaixo.
Lei de Gauss para a eletricidade
Lei de Gauss para o magnetismo
Lei de Faraday-Lenz
Lei de Ampère
Maxwell explorou as propriedades matemáticas dessas equações escritas na forma diferencial, para
propor sua teoria eletromagnética. Embora esse procedimento esteja fora do nosso alcance, vamos
fazer um exercício analítico através da exploração da simetria dessas equações.
Por exemplo, se a variação do FB origina um campo elétrico (lei de Faraday), por que não
FE
B?
Para manter a simetria, uma tentativa natural seria escrever
Há dois erros nessa equação. O primeiro é que a experiência mostra que o sinal deve ser positivo.
O segundo é um erro dimensional. É fácil mostrar que o membro da esquerda tem unidades de m0i,
enquanto o da direita tem unidades de i/e0. Portanto, a “lei” correta deverá ser
(12.1)
Observe que o fator multiplicativo, que surgiu devido aos ajustes dimensionais, é o produto m0e0.
É a primeira vez que eles dois aparecem numa única equação. Antes, e0 relacionava-se com
fenômenos elétricos, e m0 relacionava-se com fenômenos magnéticos. A equação acima tem algo
diferente. Ela representa a inclusão da ótica na fenomenologia do eletromagnetismo. Pode-se
mostrar que a velocidade da luz no vácuo é dada por
Agora podemos escrever a lei de “Ampère-Maxwell”
(12.2)
É interessante observar que iniciamos tentando escrever uma “lei de Faraday-Lenz” para a
indução magnética, mas encontramos a eq. (12.1). Portanto, não existe uma lei de Lenz para a
indução magnética.
Vamos analisar melhor a eq. (12.1). Uma realização experimental possível seria um capacitor
com campo elétrico variável, como ilustrado na fig. 12.1. O campo E surge quando há uma corrente
i carregando o capacitor. Esta corrente, que dará origem a um campo magnético (lei de Ampère),
de repente “desaparece” entre as placas do capacitor, aparecendo depois da outra placa.
Esse “mistério” é resolvido com a eq. (12.2). A corrente entre as placas, conhecida como corrente
de deslocamento, id, é dada pelo termo
.
EXERCÍCIOS
Figura 12.2
12.1. Mostre que
tem dimensão de corrente.
12.2. Mostre que i=id.
12.3. Mostre que a corrente de deslocamento num capacitor de placas paralelas pode ser escrita
assim
12.4. Na fig. 12.2, a fem é dada por e=emsen(wt). O capacitor de placas circulares e paralelas, tem
raio R. (a) Sabendo que o valor máximo da corrente de deslocamento é I, calcule o valor máximo
de dFE/dt. (b) Mostre que a distância entre as placas do capacitor é dada por pR2e0emw/I. (c) Mostre
que o valor máximo do módulo de B entre as placas, a uma distância r do eixo de simetria do
capacitor é dado por m0I/2pr.
Arquivo da conta:
jgvieira
Outros arquivos desta pasta:





Aula Avançada - A Lei de Ampére.doc (72 KB)
Aula Avançada - A Lei de Coloumb.doc (56 KB)
Aula Avançada - A Lei de Faraday.doc (73 KB)
Aula Avançada - A Lei de Gauss.doc (108 KB)
Aula Avançada - Capacitância e Capacitores.doc (87 KB)
Outros arquivos desta conta:

01 - Básico Completo
Relatar se os regulamentos foram violados








Página inicial
Contacta-nos
Ajuda
Opções
Termos e condições
Política de privacidade
Reportar abuso
Copyright © 2012 Minhateca.com.br
Download
Random flashcards
teste

2 Cartões juh16

paulo

2 Cartões oauth2_google_ddd7feab-6dd5-47da-9583-cdda567b48b3

Estudo Duda✨

5 Cartões oauth2_google_f1dd3b00-71ac-4806-b90b-c8cd7d861ecc

Estudo Duda✨

5 Cartões oauth2_google_f1dd3b00-71ac-4806-b90b-c8cd7d861ecc

Criar flashcards