UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplina: Mecânica dos Materiais 1 – 5º Período Professor: Dr. Damiano da Silva Militão. Tema de aula 3: Propriedades Mecânicas dos Materiais Objetivos: • Mostrar como a tensão pode ser relacionada à deformação por métodos experimentais. • Discutir propriedades mecânicas e vários testes relacionados à resistência dos materiais. SEQUÊNCIA DE ABORDAGENS: • • • • • • • • 3.1 Teste de Tração e Compressão 3.2 Diagrama Tensão-Deformação 3.3 Tensão-Deformação de Materiais Dúcteis e Frágeis 3.4 Lei de Hooke 3.5 Energia de Deformação 3.6 Coeficiente de Poisson 3.7 Diagrama Tensão-Deformação de Cisalhamento 3.8 Falha de Materiais Devido à Fluência e à Fadiga “Não é conhecer muito, mas o que é útil, que torna um homem sábio.” THOMAS FULLER, M.D. 3.1-Teste de tração e compressão. Determina relação entre a tensão e a deformação normal média para metais, cerâmicas, polímeros e compostos, usando corpos-de-prova em máquina de ensaio; Ela armazena os valores da CARGA a intervalos de tempos determinados. O extensômetro lê o deslocamento (ou alongamento) entre os puncionamentos, assim estimamos a deformação Alguns extensômetros por resistência elétrica já fazem diretamente a medida da deformação. 3.2-Diagramas tensão deformação Convencional;Com os valores registrados de carga e alongamento ,determinamos as tensões e deformações; A0 é a área da seção transversal inicial do corpo-de-prova. Real.;A0 é a área da seção transversal real no momento da medição. Com esses valores plotamos os diagramas; Região Elástica; Reta tensão proporcional à deformação (linearmente elástico) até o limite de proporcionalidade (σlp). Até limite de elasticidade é possível retomar a forma original retirando a carga. Escoamento; Acima do lim. de elast. atinge-se o limite de escoamento (σE) que causa deformação plástica permanente (região perfeitamente plástico). (ocorrem limite de escoamento superior e inferior em alguns aços baixo carbono). Endurecimento por deformação (encruamento); Ocorre até o limite de resistência (σr), com decréscimo de área uniformemente ao longo do comprimento. Estricção; Área diminui em região localizada, aceitando apenas decréscimo de carga, o que curva o diagrama para baixo até a tensão de ruptura, (σrup). Curva real é apenas 0.1% diferente da convencional na região elástica ou de escoamento, onde os projetos de engenharia se concentram. Curva real, utiliza áreas reais (menores), causando tensão crescente até a ruptura em (σ’rup). 3.3-Tensão-deformação de materiais dúcteis e frágeis Características Dúcteis; Possuem 4 regiões bem definidas no diagrama. Exs: Aço doce, latão, molibidênio, zinco. Grandes deformações antes da ruptura. Absorvem choques ou energia devido a deformação. Alguns metais, como alumínio, não possuem região de escoamento constante nem σE bem definido; Nestes materiais o método da deformação residual traça uma paralela à 0.2% (0.002 pol/pol) no eixo das deformações, a qual cruza o diagrama no valor de σE estimado. OBS:Durante o curso admitiremos sempre σlp=σlim elasticidade=σE, a menos que se diga o contrário. Excessão: Borracha, que tem comportamento elástico não linear; Características Frágeis; Exs: Fofo, concreto, acrílico. Pouco ou nenhum escoamento. Não possuem 4 regiões bem definidas no diagrama. Falham bruscamente e com pouca deformação. Não possuem σRup a tração bem definido(estima-se média) Geralmente resistência a compressão é maior que a tração (veja abaixo) pois trincas tendem a fechar-se com a carga. Aço é frágil com alto teor de carbono e dúctil com baixo. Temperaturas maiores tendem a amolecer e dúctilizar ( deformar mais) os materiais frágeis. http://www.youtube.com/watch?feature=endscreen&v=sKBOd B0x4gk&NR=1 http://www.youtube.com/watch?v=lI9rb5g23VI&feature=related 3.4-Lei de Hooke Até o limite de proporcionalidade, vale a relação; ‘E’ é a cte de proporcionalidade(módulo de elasticidade ou de Young). ‘E’ tem unidade de tensão e é tabelado. Em geral mesmos materiais possuem mesmo ‘E’. Ex: aços Endurecimento por deformação: Forças interatômicas que vencem o alongamento elástico unem de volta os átomos na região plástica ao removida a carga, mas deixa uma deformação permanente; Aumenta região elástica e pt de escoamento, mas reduz ductilade. Continuada Carga-descarga causa histerese mecânica (perda de energ. dada pela área no diagrama abaixo); 3.5-Energia de deformação (ou trabalho interno) (ΔU) É o trabalho (T) da força externa linearmente variável (ΔF), que causa tensão (σ) e deslocamento(ε Δz); Como a força aumenta uniformemente de 0 à ΔF , tem valor médio ΔF/2, logo; Trabalho = força x deslocamento; T= (ΔF/2) (ε Δz) mas, σ = ΔF/ΔA = ΔF/Δx.Δy -> ΔF= σ Δx.Δy então ; T= ((1/2)σ Δx.Δy) (ε Δz) T= ΔU= (1/2) ε σ ΔV un. SI: (KJ) por unidade de volume teremos u=densidade da en. de deformação: ΔU/ΔV = u = (1/2) ε σ un. sI:(KJ/m3)ou(Kpa) Se estiver na região linear (ε=σ/E); então; u = (1/2)σ 2/E Módulo de Resiliência (ur); É a densidade de energia de deformação no limite de proporcionalidade. ur = (1/2)σlp 2/E Módulo de Tenacidade (ut); É a densidade de energia de deformação no limite de ruptura. É dado pela área total do diagrama(sem fórmula fixa) Fazer: O diagrama tensão-deformação de uma barra de liga de aço é mostrado na figura. Determinar aproximadamente o módulo de elasticidade, o limite de proporcionalidade, o limite de resistência e o módulo de resiliência. Se for aplicada carga à barra até uma tensão de 360 MPa, determinar a deformação elástica recuperada e a deformação permanente da barra quando for retirada a carga. Fazer: Algumas vezes, indicadores diretos de tensão são usados, em vez de torquímetros, para assegurar que o parafuso tenha a tensão especificada quando usado em conexões. Se a porca de um parafuso está apertada de modo que as seis cabeças do indicador — que originalmente tinham 3 mm de altura — estão esmagadas 0,3 mm, deixando uma área de contato de 1,5 mm2 em cada cabeça, determinar a carga vertical para cima aplicada no parafuso. O material tem o diagrama tensão-deformação mostrado. 3.6-Coeficiente de Poisson (𝜈) Na faixa de elasticidade, a razão entre deformações laterais e longitudinais em materiais homogêneos e isotrópicos, é uma constante. (adimensional) 0 ≤ν≤ 0.5 (Cap10) (o sinal negativo é devido a alongamento longitudinal (positivo) causar contração lateral (negativa) e vice-versa.) A def. lateral é causada por força longitudinal e não lateral. Exemplo: A haste plástica é feita de Kevlar 49 e tem diâmetro de 10 mm. Supondo que lhe seja aplicada uma carga axial de 80 kN, determinar as mudanças em seu comprimento e em seu diâmetro. Sol: A tensão normal será; Com a lei de Hooke obtemos a def. normal; Então a mudança de comprimento será; Com 𝜈 =0.34 (tabelado) e a relação de Poisson obtemos a deformação lateral; Finalmente a variação do diâmetro; 3.7-Diagrama tensão deformação de cisalhamento Analogamente a tensão normal teremos um diagrama do tipo; Com: tensão cisalhante limite de proporcionalidade (τlp). tensão cisalhante limite de resistência(τr). tensão cisalhante limite de ruptura(τrup). Na região elástica vale a lei de Hooke: G é a tg denominado módulo de elasticidade ao cisalhamento Ou módulo de rigidez. (unidades: mesmas de E (Pa ou psi), pois γ em rad é adimensional) E, 𝜈 e G são relacionados pela equação Obs: 1-No Tema-6 veremos a razão dessa relação. 2-No Tema-5 veremos que os corpos-de-prova utilizados são tubos circulares finos que sob torque e calculando seu ângulo de torção determinamos a def. e tensão de cisalhamento para construir o gráfico. Fazer: O diagrama tensão-deformação de cisalhamento de uma liga de aço é mostrado na Figura. Supondo que um parafuso com 0,25 pol de diâmetro seja feito desse material e usado na junta de sobreposição, determinar o módulo de elasticidade E e a força P necessária para provocar escoamento do material. Suponha que ν= 0,3. 3.8-Falha de materiais devido a fluência e fadiga Fluência: Deformação permanente em função do tempo para um corpo submetido a carga constante. Vejamos um gráfico para fluência de 1% (ou seja, deformação de 1%): Lim. de resistência a fluência (σ flu) é a tensão que causa a deformação (fluência) admissível no material em certo tempo. Por exemplo no gráfico o aço inox tem σflu =20ksi para um tempo de 1000h e uma fluência de 1%. Temperaturas mais elevadas diminuem a resistência a fluência. Para construção do gráfico vários corpos de prova são submetidos a tensões diferentes e anotados os tempos para atingir certa fluência. Fadiga: Ciclos repetidos de tensão, causam falhas nas estruturas, levando à ruptura com um esforço menor que o limite de escoamento do material (fragilização). Nesses casos tensões acima da média na seção concentram-se em regiões da superfície, causando fissuras e trincas. A tensão segura para que um material sob carregamento cíclico não sofra falhas ou fissuras é denominada, limite de fadiga (σlf ou Slf ) . Por exemplo o limite de fadiga no gráfico (SxN)(tensão-ciclo) abaixo, é a ordenada onde a curva fica horizontal (27ksi para aço; 19ksi para al). http://www.youtube.com/watch?v=mO1ZwKaMNmA Na construção desses gráficos, corpos-de-prova são submetidos a tensões especificadas e anotados o número N de ciclos até sua ruptura. Fadiga e fluência são estudados mais a fundo no curso de Mec. dos Mat. 2. – Bibliografia: – R. C. Hibbeler – Resistência dos materiais – 5º Edição. MUITO OBRIGADO PELA ATENÇÃO!