Física Geral e Experimental II

Propaganda
Movimento em I
dimensão
Prof. Hebert Monteiro
Introdução

Iniciaremos o nosso curso estudando a mecânica como ciência que
estuda o movimento.

A mecânica é dividida em duas partes:
Cinemática: que é o estudo do movimento sem referência às suas
causas. Na cinemática definimos grandezas utilizadas na mecânica
tais como: velocidade e aceleração.
Dinâmica: é o estudo que engloba as leis do movimento, permitenos prever o movimento de um objeto com base em informações
sobre o mesmo e seus ambiente. Além das grandezas acima
citadas a dinâmica aborda conceitos como força e massa.

Para descrevermos o movimento de um objeto em I dimensão, o
primeiro passo é fixarmos um sistema de coordenadas, ou sistema
de referência. Para o movimento ao longo de uma reta, isto exige
primeiro a escolha de uma origem em algum ponto da reta e, em
seguida, de uma direção positiva.
Verifiquem então o movimento realizado pelo carro de fórmula 1 do
slide anterior.
Estipulamos como origem o ponto “início” (correspondente à origem
do plano cartesiano) e a direção positiva como a direita ou leste
(direção positiva do eixo x do plano cartesiano).
Na cena em questão analisada o carro realiza um movimento que
vai de sua posição inicial x1 até a sua posição final x2. A sua
posição inicial corresponde ao seu tempo inicial, assim como a sua
posição final corresponde ao seu tempo final.
Determinadas essas grandezas, já podemos calcular o
deslocamento do carro que é medido em metros, através da
fórmula:
Δx = x2 – x1
Como nosso objeto se moveu na direção positiva, tanto seu
deslocamento quanto as outras grandezas que serão medidas são
positivas.
Da mesma forma que calculamos o seu deslocamento através das
suas posições iniciais e finais, também podemos calcular o tempo
gasto para realizar o movimento através da equação que representa
a variação de tempo do movimento:
Δt = t2 – t1
A unidade de tempo utilizada nesse tipo de movimento é o segundo,
portanto a nossa variação de tempo tem como unidade de medida o
segundo.
Exercício:
1) Uma pessoa sai de sua casa e caminha em linha reta pela calçada
no sentido oeste-leste, passa então por um ponto de ônibus e
caminha 15 m até parar. Considerando sua casa como posição
inicial e sabendo que ela está a 30 m a Oeste do ponto de ônibus.
Determine o deslocamento total da pessoa e o seu sentido.
Velocidade Vetorial e Velocidade Média
A velocidade de um objeto nos diz quão rapidamente ele caminha e
a direção que ele segue em determinado instante. A melhor maneira
de entender o significado do vetor velocidade é definir e discutir
primeiro a velocidade vetorial média e utilizá-la em seguida para
definir velocidade vetorial.
A velocidade média de um objeto que se deslocou do ponto x1 ao
ponto x2 no intervalo de tempo de t1 a t2 é dada por:
v = x2 – x1 = Δx
t2 – t1 Δt
Como a unidade do deslocamento é metros e a do tempo é
segundos, sendo assim, a unidade de medida que representa a
média de velocidade do objeto no S.I. é m/s.
De acordo com a explicação anterior, a velocidade média é a média
de rapidez que o objeto executou o seu deslocamento, durante um
intervalo de tempo, sendo assim, ela é constante.
Quando pensamos em vetor velocidade ou velocidade propriamente
dita, estamos falando em velocidade instantânea, ou seja, a
velocidade em um determinado instante e não uma média que se
encontra dentro de um tempo.
Para encontramos a velocidade o
necessariamente tenderá a zero, ou seja:
v = lim v = lim Δx
Δt 0
Δt
intervalo
de
tempo
Exercício:
1)
Um carro sai de um posto de combustível e movimenta-se em
uma auto-estrada no sentido leste-oeste. Depois de 15 s vê a sua
frente uma placa de trânsito que está a exatamente 81 m de
distância. O carro continua o seu movimento e para 13 metros
após a placa de trânsito decorridos 22 segundos após a sua
partida. Calcule: a) O seu deslocamento e a sua velocidade
média. b) Caso o carro estivesse no sentido oeste-leste, como
ficariam os resultados da pergunta a)?
Aceleração e aceleração média
Assim como a velocidade indica uma taxa da variação da posição
com o tempo, a aceleração descreve uma taxa de variação da
velocidade com o tempo. Como a velocidade, a aceleração também
é uma grandeza vetorial.
Imaginem uma partícula em movimento ao longo do eixo x.
Suponha que em um dato instante t1 a partícula esteja no ponto x1
e possua uma velocidade instantânea de Vx1. Em outro instante
chamado de t2 a partícula está no ponto x2 e possui velocidade
instantânea de Vx2. Definimos aceleração média como uma
grandeza vetorial que é dada pela razão da variação da
componente x da velocidade e o intervalo de tempo Δt.
a = v2 – v1 = Δv
t2 – t1 Δt
Como a unidade de medida da velocidade é m/s e da variação de
tempo é dada em segundos, a unidade de medida que representa a
aceleração ou a aceleração média de um objeto é m/s2.
Podemos agora definir aceleração ou aceleração instantânea
seguindo o mesmo procedimento adotado quando definimos
velocidade instantânea.
Imaginem que um piloto de um carro de corridas acaba de entrar na
reta final do Grand Prix como ilustra a figura a seguir:

Para definir a aceleração instantânea no ponto P1, imaginamos que
o ponto P2 da figura se aproxima continuamente do ponto P1, de
modo que a aceleração média seja calculada em intervalos de
tempos cada vez menores. A aceleração instantânea é o limite da
aceleração média quando o intervalo de tempo tende a zero.
a = lim Δv
Δt 0 Δt
Exercícios
1)
A velocidade de um carro aumenta de 18 para 23 m/s em um
intervalo de tempo de 5,8 s. a) Tomando a direção +x segundo a
direção do percurso do carro, determine a aceleração média. b)
Supondo a direção +x oposta a direção do percurso, determine a
aceleração média.
2)
Em um teste para um novo modelo de automóveis da empresa
Motores Incríveis, o velocímetro é calibrado para ler em m/s ao
invés de Km/h. A série de medidas a seguir foi registrada durante
o teste ao longo de uma estrada retilínea muito longa.
tempo (s)
0 2 4 6 8 10 12 14 16
velocidade (m/s) 0 0 2 6 10 16 19 22 22
Calcule e a aceleração média durante cada intervalo de 2 s. A
aceleração é constante? Ela é constante em algum trecho do
teste?
Download