Slide 1

Propaganda
Exercício 1
1- Óleo quente com temperatura de 200ºC, h = 50W/m.k escoa através de um
longo tubo ( L = 2 m ) de paredes delgadas e 30 mm de diâmetro. O tubo
encontra-se no interior de uma casca cilíndrica concêntrica, mantida a 50ºC e com
diâmetro de 150 mm. O espaço entre o tubo e a casca é preenchido com um
material isolante de condutividade térmica de 0,05 W/m.k. O cilindro externo está
exposto ao ar ambiente de 25ºC com coeficiente de transferência de calor por
convecção h = 5 W/m.k. Qual a perda de calor para o ambiente?
Esquema
Considerando regime estacionário, condução bidimensional, propriedades constantes e
coeficientes de transferência de calor interno e externo uniformes
Substituindo os valores obtemos
Exercício 2
Obter a matriz para o cálculo das temperaturas nos nodos 1,2,3 e 4 para uma
placa sujeita a uma condução bidimensional, em regime estacionário conforme
figura abaixo
Considerando regime estacionário, condução bidimensional, propriedades constantes
Nodo 1 : 500 + 100 + T3 + T2 – 4T1 = 0
Nodo 2 : 500 + 100 + T4 + T1 – 4T2 = 0
Nodo 3 : T1 + 100 + 100 + T4 – 4T3 = 0
Nodo 4 : T2 + 100 + 100 + T3 – 4T4 = 0
Rearranjando as equações temos :
– 4T1
+ T2
T1
– 4T2
T1
T2
+ T3
= - 600
+ T4
=
- 600
– 4T3
+ T4
=
- 200
+ T3
– 4T4
=
- 200
Este sistema de equações deverá ser resolvido pelo método
da inversão das matrizes ou por Gauss-Seidel
Exercício 3
•Eixos de aço carbono (AISI 1010) com 0,1 m de diâmetro são tratados termicamente
pelo aquecimento em fornalhas a gás onde os gases se encontram a 1200 K e
mantêm um coeficiente de transferência de calor por convecção de 100 W/m2.k . Se
os eixos entram no forno a 300 K, quanto tempo eles devem permanecer no seu
interior até que suas linhas de centro atinjam uma temperatura de 800 K?
Esquema
Considerações: regime transiente, condução radial, propriedades constantes
Propriedades :
Tabela A.1 com Temperatura média ( 800 + 300)/2 = 550 K
Cálculo do número de Biot
‹‹
O método da capacitância global é indicado neste caso.
1
Dessa forma:
Exercício 4
•
Um cilindro longo (L = 2 m) de aço (k=40 W/m.K, α=1x10-5 m2/s, ρ=7854
kg/m3, cp=434 J/kg.K) com 0,2 m de diâmetro e temperatura inicial de 400
ºC, é subitamente imerso em água a 50 ºC. Se o coeficiente convectivo é
igual a 200 W/m2.K, após 20 minutos, calcule: (a) a temperatura no centro do
cilindro, (b) a temperatura na superfície do cilindro, (c ) O fluxo térmico na parede
do cilindro.
Considerações: regime transiente, condução radial, propriedades constantes
Cálculo do número de Biot e Fourier
(a) ) a temperatura no centro do cilindro
Pelo gráfico da figura D.6
(b) a temperatura na superfície do cilindro
Pelo gráfico da figura D.5
(c ) O fluxo térmico na parede do cilindro.
Exercício 5
Uma chapa muito espessa , que possui difusividade térmica de 5x10-6 m2/s e
condutividade térmica de 20 W/m.k está inicialmente a uma temperatura uniforme de
325 ºC . De repente, a sua superfície é exposta a um material refrigerante que se
encontra a 15 ºC e mantém um coeficiente de transferência de calor por convecção
de 100W/m2.k Determine a temperatura na superfície e a uma profundidade de 45
mm passados 3 min. de exposição da chapa ao ambiente.
Considerações: regime transiente, condução unidimensional sólido semiinfinito, propriedades constantes
=
Pelo gráfico da fig. 5.8
Download