Aula 21

Propaganda
Aula 21
Semelhança
Semelhança
Semelhança
Modelo reduzido em escala geométrica 1:30 da tomada
d’água e da comporta vagão da Usina Hidrelétrica de
Tucuruí (ELETRONORTE), no rio Tocantins, projetada
pela Badoni A.T.B. Indústria Metalmecânica S/A, 1985.
Semelhança
Modelo reduzido em escala geométrica da tomada d’água
e da comporta vagão da Usina Hidrelétrica de Paulo
Afonso IV (CHESF), no rio São Francisco, projetadas pela
Ishikawajima do Brasil Estaleiros S/A, 1978.
Semelhança
Semelhança
Modelo marítimo - Itanhaém S.P.
Semelhança
Estudo da previsão das
condições do protótipo
a partir de observações
de modelos
A semelhança envolve o uso de parâmetros adimensionais
obtidos da análise dimensional
Semelhança
FI m Fp m F m Fg m



FI p Fp p F p Fg p
 FI 
 FI 
   
F 
F 
 p m  p p
 FI 
 FI 
   
F 
F 
  m   p
 const.
 FI 
 FI 
   
F 
F 
 g m  g p
Semelhança
 FI 
 FI 
   
F 
F 
 p m  p p
Eum  Eup
 FI 
 FI 
   
F 
F 
  m   p
Re m  Re p
FI  f (Fp ,F ,Fg )
Eu  f (Re, Fr )
 FI 
 FI 
   
F 
F 
 g m  g p
Frm  Frp
Problema 6.39
Que velocidade deveria ser selecionada em um
túnel de vento no qual um modelo de automóvel
em escala 9:1 deve simular uma velocidade de
12m/s? Despreze efeitos de compressibilidade.
Problema 6.40
O escoamento em volta de uma componente estrutural
debaixo d’água deve ser estudada em um túnel de vento
a 200C em um modelo em escala 10:1. Que velocidade
deve ser selecionada no túnel de vento para simular uma
velocidade de 4m/s de água a 100C.
Semelhança
FI m
FI p
ammm

 const.
apmp
2
m
2
p
am V /  m

 const.
ap
V / p
Semelhança
cinemática
Razão entre as
velocidades cte.
Semelhança
geométrica
Modelo tenha a mesma
forma do protótipo.
Semelhança
Semelhança
Completa
A semelhança geométrica seja
satisfeita;
 A razão de massa dos elementos
correspondentes do fluido seja uma
constantes;
 Os parâmetros adimensionais
apropriados sejam iguais
Semelhança
FA m FI m

FA p FI p
m V 

p V 
2
m
2
p
2
m
2
p
2 2

Wm FI m Vm m Vm m Vm


2 2

FI p Vp p Vp  p Vp
Wp
Problema 6.41
Um modelo com escala 1:7 simula a operação de uma
turbina grande que deve gerar 200kW com uma vazão de
1,5m3/s. Que vazão deve ser usada no modelo e qual a
potência de saída é esperada?
a)
Problema 6.41
b)
Escoamentos Confinados
 Força de Pressão;
 Forças Inerciais;
 Forças viscosas.
Eu  f (Re)
Escoamentos de Superfície Livre
Escoamentos de Superfície Livre
Escoamentos de Superfície Livre
Podemos ignorar: St, M, We
Escoamentos de Superfície Livre
Froude
gm  gp
Reynolds
m  p
1/ 2
V
V
Vm   m 



 mgm  p gp Vp   p 
2
m
2
p
m  p
Vm  m Vp  p Vm  p



m
p
Vp  m
m  p  m /  p 
3/2
Exemplo 6.4 pg-207
Um modelo em escala 1:20 da superfície de um barco é usado para
testar a influência de um perfil proposto do barco sobre o arrasto das
ondas. Um arrasto de onda de 6,2 lb é medido no modelo a uma
velocidade de 8,0 ft/s. A que velocidade isso corresponde no protótipo e
que arrasto de onda é esperado para o protótipo? Despreze os efeitos
viscosos e suponha o uso do mesmo fluido no modelo e no protótipo.
Vm
Vp
Frm  Frp 

 mg
 pg
1/ 2
 p 
Vp  Vm  
 m 
 8,0 20  35,8ft / s
Exemplo 6.4 pg-207
FA m
FA p
m Vm2  2m

p Vp2 2p
p   m
FA p
2
35,8
 6,2  2  202  49700lb
8
Escoamentos com número Re ALTO
Vm  Vp
p
m
CA
Independente do
número de Re
Independente do
número de Re
Exemplo 6.5
Um modelo em escala de 1:10 de um automóvel é usado para medir o
arrasto sobre o design proposto. Ele deve simular o protótipo a uma
velocidade de 90km/h. Que velocidade deve ser usada no túnel de
vento se os números de Reynolds são igualados? Para essa
condição, qual é a razão das forças de arrasto?
Vm  Vp
p
m
Vm  90  10  900km / h
FA p
FA m
FA p 902  102



2 2
m Vm  m FA m 900 2  12
p Vp2 2p
1
Exemplo 6.6
No exemplo 6.5, caso em que os números de Re seriam igualados,
observou-se que a velocidade no modelo em estudo estaria no regime de
escoamento compressível (M>0,3 ou Vm>360km/h). Para conduzir um
estudo de modelo aceitável, poderíamos usar uma velocidade de 90km/h
sobre um modelo com comprimento característico de 10cm? Suponha que
o coeficiente de arrasto CA é independente de Re, para Re>105. Para tanto
que força de arrasto no protótipo corresponderia à força de arrasto de 1,2N
medida no modelo?
90
 0,1
Vm m
3,6
5
Re m 


1
,
56

10
m
1,6  10 5
FA p
FA m
2
2

90   10 

 FA p  1,2
2
2
2 2
m Vm m
90  1
p Vp2 2p
 120N
Escoamentos Compressíveis
Mm  Mp
Vm Vp

cm cp
Túnel de vento;
 p= ar;
Tm=Tp
cm  cp
Ver exemplo 6.7 pg-209
Escoamentos Periódicos
Número de St
Vp
Vm

m  m p  p
 Re, Fr, M
Problema 6.65
Um estudo sob a água de um golfinho será realizado
usando um modelo em escala 1:10. Deve-se simular um
golfinho nadando a 10m/s e fazendo um movimento de
nado a cada segundo. Que velocidade pode ser usada no
canal de água e, para aquela velocidade, quantos
movimentos de nado por segundo devem ser feitos?
 m  0,1
p  1
Vm  p
5
m  p
 1  10  5mov. / s
Vp  m
10
Problema 6.65
Vm  p
m  p
Vp  m
5
m  1  10  5 movimentos / s
10
Download