UNIVERSIDADE CATÓLICA DE BRASÍLIA PRÓ-REITORIA DE GRADUAÇÃO TRABALHO DE CONCLUSÃO DE CURSO Curso de Física A Astronomia no Ensino Médio: Oficinas de Astronomia Autor: Jefferson de Sousa Pereira Orientador: Prof. Dr. Paulo Eduardo de Brito BRASÍLIA 2006 JEFFERSON DE SOUSA PEREIRA A Astronomia no Ensino Médio: Oficinas de Astronomia T r aba l h o de C o nc lus ã o de C ur s o or i en t ad o pe l o P r of . D r . Pa u l o E d uar d o d e Br i t o, apr es e nt ad o a o C u r s o d e F ís ic a da Un i v er s id a de C at ó li c a de Br as íl i a c om o pr ér eq u is it o p ar a a o b te nç ão d o g r a u d e L ic e nc ia d o em Fís ic a . Brasília 2006 1 A Astronomia no Ensino Médio: Oficinas de Astronomia RESUMO O objetivo geral deste trabalho é produzir materiais didáticos para realizar oficinas de astronomia para o Ensino Médio. Para isso foi elaborada uma série de experimentos que abordam alguns tópicos importantes de astronomia, como astronomia de localização, sistema solar, movimentos da Terra e da Lua, constelações e viagens espaciais. Para tal realização, este trabalho propõe uma fundamentação teórica para a construção do relógio solar, do astrolábio, dos modelos comparativos de distâncias e tamanho dos planetas, do planisfério e do foguete a base de ar ou água. PALAVRAS-CHAVE: astronomia, materiais didático, experimentos, equipamento. “Eu vou lutar e acreditar até o fim, o tempo vai passar, mas não desistirei, e sempre devagar eu vou me aproximar do pouco que sonhei e de tudo que eu amar”. 2 3 1. INTRODUÇÃO Um dicionário de língua portuguesa apresenta como significado da palavra Astronomia, a ciência que estuda os astros e a posição relativa dos mesmos (SACCONI, 2006). De modo geral esse significado estaria correto, porém, para estudos mais específicos, podemos dizer que em se tratando do estudo do Universo existem duas principais áreas do conhecimento humano: a Astronomia e a Cosmologia. A Cosmologia é um ramo da ciência que estuda o Universo como um “todo”, suas estruturas e a sua evolução a partir de métodos científicos. As grandes teorias de evolução do Universo como “Big-bang” e a “Teoria das cordas”, são duas das grandes realizações das pesquisas em Cosmologia. A Astronomia pode ser dividida em três partes, ou ramos de pesquisas: a Astronomia Clássica, a Astrofísica, e a Mecânica Celeste. A Astronomia Clássica estuda, basicamente, a posição relativa dos astros no céu, e é a parte da Astronomia responsável pelo estudo da localização dos planetas e dos satélites, o mapeamento das estrelas e de suas constelações, sem contar com posição de galáxias e outros aglomerados de estrelas do céu. A Astrofísica é a parte da Astronomia que estuda a estrutura do Universo de forma mais específica. A Astrofísica pode parecer redundante à Cosmologia, mas a diferença é que a Cosmologia estuda a estrutura do Universo como um todo, enquanto a Astrofísica estuda a estrutura do universo em partes. Enquanto a Cosmologia está preocupada em estudar a evolução do Universo, a Astrofísica estuda a evolução e estrutura das estrelas e das galáxias. A Mecânica Celeste estuda o movimento dos astros utilizando as leis da Mecânica (ramo da Física). Um bom exemplo do triunfo da Mecânica Celeste foi a descoberta do planeta Netuno, através de constatações na perturbação da órbita de Urano. Essas três áreas da Astronomia envolvem conceitos importantes na formação científica do aluno, já que faz parte de um dos temas propostos pelos PCN, (Parâmetros Curriculares Nacionais), os quais colocam como unidades temáticas a Terra e o Sistema Solar, o Universo e sua Origem, e a compreensão humana do Universo. Dessa maneira, o estudo da Astronomia pode ajudar a obter boa parte destes tópicos. Apesar de todas essas considerações, raras vezes o tema Astronomia é trabalhado em sala de aula de ensino médio, sendo que este assunto não deixa de ser tão importante quanto os demais temas da área da física, pois a humanidade sempre teve o interesse de construir um conhecimento cientifico para entender a dinâmica do Universo. 4 2. OBJETIVOS / JUSTIFICATIVA O objetivo deste trabalho foi construir experimentos que servirão para o trabalho didático de ensino de Astronomia, os quais foram chamados de: Oficinas de Astronomia. Por se tratar de materiais de fácil obtenção, e de fácil construção, é aceitável que a sua utilização no ensino de astronomia seja viável. Em alguns lugares, o estudo da astronomia (com utilização das oficinas) já vem sendo desenvolvido com os alunos. Um bom exemplo disso são as realizações do professor Canalle, da UFRJ (Universidade Federal do Rio de Janeiro), em parceria com a AEB-Escola (Agencia Espacial Brasileira), que já vem a algum tempo aplicando algumas oficinas similares a estas aqui propostas, oficinas que podem ser encontradas na RBEF (revista brasileira de ensino de física), como “O sistema solar numa representação teatral” (CANALLE 2004) Estas oficinas aqui propostas tiveram uma prévia experiência aplicada em escolas como o Centro Educacional 01, na cidade de São Sebastião, em setembro de 2005, a Escola Paulo Freire da Asa Norte, em abril de 2006, e na Semana Universitária da Universidade Católica de Brasília em setembro de 2006 com a oficina do foguete. Este trabalho irá dar subsídios teóricos e práticos para a construção de um astrolábio, um relógio solar, um modelo comparativo de distância e outro de dimensão dos planetas do Sistema Solar, um planisfério e um foguete a água (ou a ar). Estes equipamentos poderão ser utilizados nas aulas de Astronomia e que servirão de apoio e/ou lembrança e recordação das aulas. A partir do momento que os alunos constroem um instrumento, eles passam a compreender melhor sua utilidade, e os principais conceitos que os envolve, possibilitando um bom aprendizado (ARRUDA & LABURU, 1996). Nas seções a seguir serão vistos os subsídios teóricos às oficinas de astronomia, para um entendimento mais completo, com as técnicas de construção e seus manuseios. 3. OFICINAS A construção de materiais para o desenvolvimento de trabalhos em astronomia é essencial para o desenvolvimento de novas tecnologias. Essas tecnologias são obtidas conforme as necessidades apresentadas nas missões ou investigações científicas e astronômicas, e, em conseqüência, a sociedade desfruta de todos os ônus obtidos na tecnologia de construção dos instrumentos de pesquisas científicas e astronômicas em nossos aparelhos atuais como: computadores, televisores atuais, forno de microondas e etc. Os equipamentos ou experimentos realizados nas oficinas aqui propostas, são de fácil confecção ou elaboração. 5 As construções destes equipamentos podem proporcionar aos alunos de astronomia uma boa visão da relação do homem com o conhecimento astronômico, deixando-os em condição para perceber como os astrônomos realizam seus trabalhos, e como obtém várias informações dos planetas, da lua, das estrelas e dos demais astros. Será mostrado a seguir como trabalhar em diversas oficinas e os pressupostos teóricos e históricos para o entendimento das mesmas. Para tais realizações selecionamos seis experimentos: relógio solar, astrolábio, Cordão do Sistema Solar, Sistema Solar em bolas, planisfério e o foguete a propulsão de água, com sua base lançadora. 3.1 Relógio Solar 3.1.1 Introdução Desde a antiguidade, as medidas de tempo foram baseadas nos movimentos aparentes dos astros, isso por que esses movimentos são bem regulares e, em muitos casos, facilmente observados. Foi somente no século XX que o segundo padrão (unidade básica de medida do tempo) passou a ser baseada em transições atômicas. De qualquer forma, mesmo tendo um tempo padrão definido pela física atômica, as escalas de tempo utilizadas ainda são baseadas nos movimentos do sistema Terra, Sol e Lua, por exemplo, a medida do dia que é ligado ao movimento de rotação da Terra em torno do seu próprio eixo. Ao levar em conta a contagem dos dias em relação aos movimentos dos astros, são consideráveis dois tipos de dias: dia solar e o dia sideral. Figura 1: o dia solar e o dia sideral. Nota-se que o dia solar é maior que o dia sideral, devido ao movimento de translação da Terra. 6 O dia sideral é o intervalo de tempo decorrido entre duas passagens sucessivas de uma estrela pelo mesmo meridiano local. O dia solar é o intervalo de tempo decorrido entre duas passagens sucessivas do Sol pelo mesmo meridiano do lugar. O dia solar é 3m56s mais longo do que o dia sideral. Essa diferença é devida ao movimento de translação da Terra em torno do Sol, de aproximadamente 1º (~4 min) por dia. Para melhor visualização da diferença do dia solar e do dia sideral, veja a Figura 1. Existem dois tipos de dia solares: dia solar verdadeiro e o dia solar médio. O dia solar verdadeiro é medido pelo trajeto do Sol ao longo de sua verdadeira trajetória: a eclíptica. Sendo assim temos diferentes dias solares verdadeiros ao longo do ano; a mudança de direção da eclíptica se dá devido o movimento de translação da Terra. Já o dia solar médio é medido pelo trajeto imaginário que o Sol faria em torno do equador celeste (exatamente de leste a oeste), sendo considerado a mesma duração do dia ao longo de todo ano. Para fabricação do relógio solar é necessário levar em conta estas variações, ou seja, a cada período do ano o meio dia local (dia solar médio) diferente do meio dia do relógio solar (dia solar verdadeiro). A inclinação do eixo de rotação da Terra é de 23,5º com a perpendicular do plano da eclíptica (plano de órbita da Terra em torno do Sol). Esse eixo sofre uma rotação em torno da perpendicular deste plano que dura aproximadamente 26000 anos (Movimento de Precessão). Como este movimento é muito lento, durante um ano, o eixo está apontado para um ponto específico do Céu, chamado de Pólo Norte Celeste. A conseqüência disto é que os raios solares incidem de maneira diferente ao longo do ano, ou seja, incidem com maior ou menor inclinação. Para determinação da hora local do planeta, dividiu-se a Terra em vinte e quatro meridianos, que são os fusos horários locais. Dessa maneira é preciso levar em conta a variação do ângulo do meridiano local, pois entre um fuso horário e outro há uma variação de quinze graus, os quais determinam uma hora, e assim, se uma cidade se encontra num meridiano local de vinte e cinco graus, a sua hora pode ser correspondente ao meridiano de quinze graus ou o de trinta graus, desta maneira o seu meio-dia local pode estar em déficit de até quarenta minutos (caso a cidade referenciada esteja no meridiano de quinze graus), e essa variação também será levada em conta na fabricação do relógio solar. Em outras palavras, a posição do Sol em relação a um determinado ponto da Terra, depende da sua latitude, longitude, dia e hora do ano. Dessa maneira, todos estes aspectos devem ser levados em conta para a construção do relógio solar. 7 3.1.2 Construção Para construir o relógio solar será preciso poucos materiais, porém, necessita-se de muita paciência, capricho e atenção por parte dos construtores. A relação dos materiais necessários é: • Lápis • Estilete • Cartolina ou outra folha branca • Bússola • Régua milimetrada • Programa “Cálculo do Relógio Solar” • Fita adesiva Durex O Sol descreve ao longo do dia um ângulo de 180O, sendo que ele nasce no leste e se põe ao oeste (dependendo da época do ano). Sendo assim, caso estivéssemos no pico de uma montanha, seria possível obter as horas de seis da manhã até seis da tarde em média, mas como somos cobertos por prédios, casas, e etc. será obtido com um mínimo de exatidão, das dez da manhã até as quatro da tarde, dependendo da região do país. Com o auxilio do Programa Cálculo do Relógio Solar (AGOSTINI, 2006), disponível na página http://www.astronomos.com.br/zeca, é que será feito o relógio solar. Este programa requer como parâmetro de entrada: a latitude, a longitude, o meridiano de fuso horário da cidade a qual o construtor se encontra e o tamanho do relógio solar que desejar; preenchendo estes dados nas células amarelas que são facilmente vistas no programa. Após o preenchimento o programa lhe dará alguns dados de tamanhos de linhas para cada hora do dia. Cada linha tem uma cor, como na figura 2 abaixo você pode visualizar. As cores são para determinar onde ficará a marca. Figura 2: Esquema geral do relógio solar. (Figura retirada do programa Cálculo do Relógio Solar) A marca indicada no programa, por exemplo, das horas em azul, poderá ser negativo ou positivo, contado a partir da divisa entre o positivo e o negativo facilmente visível na figura 2. O tamanho será medido em centímetros (o programa dará este tamanho), 8 após a determinação deste ponto, é só fazer uma linha do “O” até a marca estabelecida, é esta linha onde se encontrará a sombra da determinada hora do dia. Isto vale para todas as outras linhas. O suporte que projetará a sombra em seu relógio solar é feito na forma de um triângulo (com a base um pouco menor que a linha amarela da figura 2), com o ângulo entre a base e a hipotenusa igual ao ângulo de latitude do local, isto para que a sombra se projete acompanhando a linha elaborada no relógio. Corte com o estilete o local da linha amarela (figura 2), apenas o suficiente para colocar o suporte que fará a sombra no relógio. Figura 3: Relógio solar concluído A construção do relógio solar está finalizada semelhante à figura 3 acima. Mas caso se tenha uma necessidade da hora com maior precisão, divida os espaços de horas em mais três linhas, e você obterá o seu relógio solar com precisão de quinze minutos. É importante lembrar que ao longo do ano o relógio solar apresentará oscilações da hora, isto é devido aos itens citados na introdução do relógio solar. Para correção temos na figura 4 um gráfico do erro do relógio solar ao longo do ano. Figura 4: Equação do tempo, o erro do relógio solar ao longo do ano. (figura retirada do site http://www.commons.wikimedia.org) 3.1.3 Como utilizar Com auxílio de uma bússola, aponte o relógio solar para o norte terrestre (sul magnético levando em conta a declividade magnética local), caso não tenha uma bússola, use um gnomo (uma vareta enfiada de ponta no chão), pois para saber o sul terrestre, é só observar para onde aponta a menor sombra do dia. Determinada a localização, aponte o bico do relógio solar para o sul, e é só olhar a hora. Note que o suporte que irá projetar a sombra em seu relógio solar deve estar “no prumo”, ou seja, perpendicular à superfície do relógio solar. Com o auxilio da figura 4, faça as devidas correções do tempo, lembrando ainda que esse gráfico é para correções provocadas pela inclinação da Terra em relação ao plano da eclíptica (plano orbital da Terra em relação ao Sol) e da órbita da Terra ser uma elipse. As correções devido a latitude e longitude já foram incorporadas na construção do relógio solar. 3.2 Astrolábio 3.2.1 Introdução Para a identificação da posição de uma estrela no céu é imprescindível saber localizar-se a partir de sistemas de coordenadas. Dois sistemas são os mais utilizados: Sistema Equatorial e Sistema Local. Para nossa oficina, usaremos o sistema local de coordenas, o qual requer duas informações básicas: o azimute e altura. Dado um plano tangente ao local de observação, serão definidos os eixos referenciais tal que o primeiro eixo está na direção do norte geográfico, o segundo eixo na direção do leste geográfico e o terceiro eixo perpendicular ao plano, em direção ao zênite (ponto mais alto do céu). Utilizando as coordenadas esféricas, podemos definir dois ângulos, azimute e altura, conforme a figura abaixo. Figura 5: Sistema Local de coordenadas: O ângulo formado entre o plano leste e norte e a linha que passa pela estrela e pela origem é a altura da estrela. Já o ângulo formado entre a linha paralela do zênite que passa pela estrela e o norte, é chamado de azimute. O azimute é semelhante às coordenadas geográficas, porém, ao invés de pontos cardeais, identifica-se a direção com ângulos. Tomamos o ponto cardeal norte como sendo o ângulo de referência zero, desta maneira teremos a medida de todos os outros pontos no plano conforme a figura 6 abaixo. Figura 6: Relação dos ângulos com os pontos cardeais: noção de azimute a partir da medida horária dos ângulos fazendo como referência o norte geográfico. A altura, como o próprio nome já diz, significa que a estrela se encontra perto ou mais afastado do horizonte. Assim, a altura é o ângulo entre a estrela e o horizonte, ângulo este medido sobre o meridiano que passa sobre a estrela. Meridiano é a linha imaginária que liga o zênite ao horizonte. Assim podemos identificar a posição de uma estrela, ou de outro astro qualquer, apenas fornecendo seu azimute e sua altura. Figura 7: Astrolábio simples, para fins astronômicos. O aparelho que mede a altura e o azimute de um astro é o astrolábio, semelhante ao da figura 7 acima. O astrolábio é um instrumento muito antigo, provavelmente inventado pelos gregos em aproximadamente 150 a.C. e depois melhorado pelos árabes. Foi bastante utilizado pelos navegadores, que utilizavam as estrelas mais brilhantes (como a Estrela Polar, da Ursa Menor, que indica justamente a direção do pólo norte celeste) para se orientar em alto mar. Existe um aparelho usado para medir apenas o azimute que é o Teodolito. Suas origens são desconhecidas, mas sabe-se que hoje em dia o Teodolito ainda é utilizado pelos engenheiros para demarcar ruas, avenida e também para medir distâncias através dos ângulos obtidos pelo aparelho. Já o astrolábio mede tanto altura como azimute, tornando-se mais útil para astronomia. 3.2.2 Construção Apesar de medir tanto a altura como o azimute, para fins de simplificação na sua construção (neste trabalho), o astrolábio será dividido em dois equipamentos, um que mede apenas o azimute: o teodolito, como já foi dito; e o outro que mede apenas a altura, o qual se chamará astrolábio mesmo. Para construir um astrolábio e um teodolito será preciso os seguintes materiais: Astrolábio • Transferidor • Canudo oco ou tubo de caneta • 30 cm de fio fino • Papelão • Fita adesiva • Moeda ou um pequeno peso. Teodolito • O desenho de um transferidor (com os ângulos estejam dispostos num círculo de diâmetro maior que o copo). • Copo redondo com tampa (o copo deve possuir movimento circular fixado a tampa e não pode ser maior que o transferidor) • Canudo oco em formato cilíndrico reto ou tubo de caneta • Madeira ou papelão para servir de base para o equipamento. • Cola • Arame de comprimento maior que o diâmetro do transferidor Para construir o astrolábio, primeiramente cola-se o tubo da caneta na parte nivelada do transferidor, conforme a figura abaixo: Figura 8: Esquema do nosso astrolábio Faz-se um pequeno furo na origem das coordenadas, onde o fio ficará preso com a moeda ou um pequeno peso. Isto funcionará como um prumo, ou seja, a perpendicular ao plano local. E desta maneira o astrolábio está pronto. Já para o teodolito, primeiramente fixe o transferidor no papelão com cola. Depois cole a tampa do copo no centro do transferidor, certificando-se de que ao colocar o copo na tampa ele possa realizar movimento circular. Cole o tubo de caneta no fundo do copo com fita adesiva (durex) ou cola, de modo que ela fique fixa. Coloque o copo na tampa já colada ao papelão, como na figura 9. Figura 9: Foto do nosso teodolito Fure o copo perto da tampa e coloque o arame conforme a figura 9. 3.2.3 Como utilizar Para medir a altura de um astro utilizando o astrolábio, aponta-se o tubo na direção do objeto e o prumo irá medir o ângulo no transferidor. Este ângulo está defasado de 90º. Já que quando olhamos para o horizonte, ele marca exatamente 90º e por definição, o horizonte tem altura zero. Sendo assim a altura é determinada pela equação abaixo: θ = 90 − θ 0 Equação 1 Onde θ0 é o ângulo indicado em seu astrolábio, e θ é o ângulo correspondente a altura do astro. Desta maneira, é só localizar o estro pelo orifício do canudo (ou tubo de caneta), e verificar o ângulo medido pelo transferidor, substituir na formula e achar o ângulo de altura correspondente do estro. Já para saber o azimute de um estro em seu teodolito, tomando o norte como o ângulo zero, é só medir a variação angular do teodolito, olhando para o orifício do canudo, ou tubo de caneta, marcando assim com exatidão a posição da estrela, e você encontrará o seu azimute. 3.3 Cordão do Sistema Solar e Sistema Solar em Bolas 3.3.1 Introdução Em alguns livros didáticos e outros tipos de materiais (TIPLER, 1991), percebe-se uma ambigüidade no sentido de dimensões de distâncias dos planetas, em se tratando de dados comparativos e das figuras mostradas nestes tipos de materiais. É importante lembrar que, muitas vezes, apenas o número não deixa claro na mente dos alunos as diferenças de distâncias dos planetas ao Sol, sendo assim, este experimento proposto facilitará a visualização destas distâncias, e, por conseqüência, uma melhor aprendizagem do aluno. O mesmo acontece com o tamanho relativo dos planetas. Os livros didáticos e outros materiais (BONJORNO, 2003) deixam entender em suas fotos, figuras e imagens, uma proporção de tamanho que não corresponde aos dados de medidas inerentes aos planetas. Sendo assim, sugerimos à construção desta maquete comparativa com uso de bolas de diferentes variedades, o que facilitará a compreensão relativa dos números nos dados dos planetas, melhorando desta maneira, a aprendizagem do aluno. Na tabela abaixo temos as distâncias do Sol, as massas, a gravidade e as dimensões dos planetas do Sistema Solar. Foram incluídos dados dos três planetas anões: Ceres, Plutão e Éris. Tabela 1: Alguns dados físicos dos Planetas Raio Equatorial Massa (kg) Mercúrio 3,303. 1023 2.439,70 57.910.000 2,78 24 6.051,80 108.200.000 8,87 24 6.378,14 149.600.000 9,78 23 3.397,20 227.940.000 3,72 Vênus 4,869. 10 Terra 5,976. 10 (km) Distância do Sol (km) Gravidade Planeta (m/s²) Marte 6,421. 10 Ceres 1,195. 1021 501,50 413.800.000 0,27 Júpiter 1,900. 1027 71.492,00 778.330.000 22,88 5,668. 10 26 60.268,00 142.940.000 19,05 Urano 8,686. 10 25 25.559,00 2.870.990.000 7,77 Netuno 1,024. 1026 24.746,00 4.504.300.000 11,00 Plutão 1,270 .1022 1.137,00 5.913.520.000 0,40 Éris ? 1.547,00 10.200.000.000 ? Saturno Com esta idéia, foram elaboradas duas oficinas: Sistema solar em bolas, que compara o tamanho relativo dos planetas e o Cordão do Sistema Solar, para comparação das relativas distâncias dos planetas ao Sol. 3.3.2 Construção Para construir o Cordão do Sistema Solar e o Sistema Solar em Bolas, são necessários os seguintes materiais: Cordão do Sistema Solar • Durepox, massa de modelar ou clipes. • Barbante (no mínimo 6,1 m) • Trena • Tinta de várias cores (caso tenha) Sistema Solar em bolas • Vários tipos de bolas esportivas Utilizando-se de dados da tabela 1, podemos além de elaborar uma segunda tabela com as distâncias dos planetas ao Sol, uma possível equivalência ou comparação. Tabela 2: distâncias entre os planetas e o Sol, e distância comparativa Planeta Distância do Sol (km) Comparação (cm) Cor Mercúrio 57,9 milhões 6 Cinza Vênus 108,2 milhões 11 Amarelo Terra 149,6 milhões 15 Azul Marte 227,9 milhões 23 Vermelho Ceres 414,9 milhões 41 ? Júpiter 778,3 milhões 78 Laranja Saturno 1,42 bilhões 140 Cinza claro Urano 2,9 bilhões 300 Azul claro Netuno 4,5 bilhões 450 Azul piscina Plutão 5,9 bilhões 600 ? Éris 10,2 bilhões 1020 ? A comparação exposta na Tabela 2 é bem apropriada, pois se Mercúrio estivesse a 6 cm do Sol, Netuno estaria a 4,5 m, nosso cordão ficaria com um pouco mais de quatro metros, e se ainda colocarmos os planetas anões, nosso cordão ficará com apenas 10,2 m. O Sol será colocado como uma massa de modelar (clipes ou durepox) um pouco maior e destacado numa das pontas do barbante, e a seguir mediremos 6 cm e colocaremos Mercúrio, Vênus com 11 cm e assim por diante, vem os outros planetas, conforme os dados da tabela 2, marcados pela massa de modelar ou durepox. Antes de colocar a massa de modelar (caso esteja usando massa de modelar ou durepox), faça um nó no barbante no centro onde você vai colocar o planeta, antes mesmo de colocar a bolinha de durepox (ou a massa de modelar), para evitar que se mexa. Figura 10: Foto do cordão do Sistema Solar Depois dos planetas estarem fixos, obtém-se uma boa visualização da diferença no intervalo de distância de cada um deles. Caso obtenha a tinta de várias cores, pinte os planetas com as cores dadas na tabela 2. Os planetas-anões Plutão, Éris e Ceres, ainda não têm cor conhecida. O cordão pode ser visualizado na Figura 10. Tabela 3: Dados de tamanho dos planetas e as sugeridas comparações. Planeta Raio Equatorial (km) Diâmetro Equatorial comparativo (cm) Margem do tamanho Bola Mercúrio 2.439,70 1,10 0,8 – 1,2 Bola de apito Vênus 6.051,80 2,70 2,0 – 3,0 Bola de silicone Terra 6.378,14 2,90 2,1 – 3,1 Bola de gude grande Marte 3.397,20 1,50 1,1 – 1,7 Bola de gude pequena Ceres 501,50 0,23 0,17 – 0,25 Miçanga pequena Júpiter 71.492,00 32,3 23,4 – 35,16 Bola de Basquete Saturno 60.268,00 27,17 19,8 – 28,9 Bola de Futebol Urano 25.559,00 11,40 8,3 – 12,4 Bola de terapia Netuno 24.746,00 11,10 8,0 – 12,1 Bola de tênis Plutão 1.137,00 0,51 0,37 – 0,56 Miçanga média Éris 1.547,00 0,7 0,50 – 0,76 Miçanga grande No Sistema Solar em bolas iremos precisar de vários tipos de bolas utilizadas em diversos esportes, tal estratégia poderá ser eficaz, analisando o fato dos alunos, principalmente adolescentes, gostarem muito de assistir jogos e de praticar esportes. Para os planetas anões serão utilizadas “miçangas” (bolinhas que enfeitam roupas femininas). Pela tabela 3 acima temos um referencial de tamanho relativo dos planetas. Na tabela 3, foi colocada uma margem de diferentes tamanhos possíveis para os planetas, por conta da dificuldade de encontrar bolas exatamente com os diâmetros sugeridos na 3ª coluna da tabela. Dos planetas-anões, também inclusos nesta lista, Ceres terá nesta escala o tamanho de miçanga pequena, Plutão seria do tamanho de uma miçanga média, e o Éris, do tamanho de uma miçanga grande. As proporções das bolas aqui mostradas são aproximadas, algumas têm uma boa precisão, outras caem na margem de tolerância. O nosso sistema solar é muito complexo, com diferentes tamanhos de planetas, é muito difícil fazer um modelo como esses com precisão extrema. Para melhor visualização do Sistema Solar em bolas, temos a figura 11 abaixo. Figura 11: Bolas utilizadas para construção da maquete. Observe que se Júpiter fosse do tamanho de uma bola de basquete, Plutão seria uma miçanguinha. 3.3.3 Como utilizar O Cordão do Sistema Solar e o Sistema Solar em Bolas podem ser utilizados de forma demonstrativa, o que funciona muito bem, pois para as pessoas que têm concepções de que o tamanho dos planetas é aproximadamente o mesmo e que a distância dos planetas ao Sol é linear, pode ter uma idéia da constituição do Sistema Solar em termos relativos. Essas duas oficinas podem ser bem utilizadas tanto em sala de aula, como em palestras e outros seminários. 3.4 Planisfério 3.4.1 Introdução Antigamente grandes astrônomos dedicavam sua vida na elaboração de mapas do céu, o que conhecemos na astronomia clássica como cartas celestes. O famoso Almagesto, de Claudius Ptolomeu, é um exemplo de obra que contém um catálogo de estrelas; Bayer, Hevelius, Tycho Brahe, Lacaylle e outros fizeram cartas celestes dividindo as estrelas em aglomerados chamados de constelações. Tais cartas celestes foram muito importantes para o estudo do céu. O céu estrelado foi, talvez, o primeiro objeto de estudo científico pesquisado pelo homem, da qual temos inscrições e construções em pedra que foram feitas há quase 30.000 anos atrás. Neste passado remoto, o céu era observado com espanto, admiração e respeito, e às vezes provocando profundo sentimento romântico, sentimento este da qual se basearam vários escritores, alguns em tempos mais modernos, como Shakespeare. O desconhecimento das causas dos fenômenos astronômicos provocava temor. Os astros eram considerados divinos e o céu sagrado, o qual servia de morada aos deuses e os grandes guerreiros mitológicos. Era de costume dos antigos contemplarem as noites extremamente límpidas e, como não havia iluminação urbana ou qualquer outro tipo de luz que viesse a atrapalhar a observação, os homens inventaram as constelações: figuras imaginárias de seres mitológicos, animais e objetos nos alinhamentos estelares, que agrupavam as estrelas e facilitava o reconhecimento do céu. Uma das boas razões para o estudo das constelações era a dependência econômica na época da agricultura. Existe o tempo certo para se plantar e para se colher, e como os antigos não dispunham de calendários modernos como hoje, as estrelas indicavam o tempo certo para cada ato na agricultura. Por exemplo: o plantio de milho na região nordeste do Brasil é sempre realizado no mês de janeiro ou final de dezembro (segundo agricultores locais), se não dispuséssemos de calendários, poderíamos dizer que o plantio de milho, nesta região do Brasil, seria favorável quando a estrela Polux, da constelação de Gêmeos nascesse no céu bem no começo da noite. Além de servir como calendário, as disposições das constelações no céu serviam para definir épocas de cada fenômeno natural, como as estações do ano. Um bom exemplo disso era os egípcios que, para eles, as cheias do Rio Nilo eram provocadas pelo deus Aquárius que anualmente despejava seu gigantesco jarro de água nas nascentes deste rio, fato relacionado à constelação de aquário quando o Sol está nesta região do céu nesta época do ano. A Constelação de Virgem foi assim batizada por que quando o Sol estava nesta região do céu, era época certa para colheita do trigo, tarefa que era reservada na época às moças virgens. Revestindo a realidade de mitos, os gregos também foram os principais “artistas” nesta área. Segundo eles, Órion era um gigante guerreiro, caçador e amante da Astronomia, que certa vez desafiou Ártemis (Diana para os romanos), a deusa da caça, e venceu a deusa de forma inimaginável. Indignada com a situação e ainda totalmente apaixonada (conta-se que a vitória de Órion fez com que a deusa se apaixonasse por ele), incumbiu um escorpião de matá-lo. Na luta ambos morreram e em seguida foram transformados pela deusa em constelações. É interessante notar que Órion só aparece no céu, quando escorpião “esconde” do outro lado, na mitologia grega é o sinal da rivalidade de Órion e o escorpião. É importante saber que em uma constelação algumas estrelas recebem nomes e outras não, mas utilizamos um meio de distinguir cada uma delas: as letras do alfabeto grego. A ordem do alfabeto grego é da estrela de menor magnitude para a que tem maior magnitude, lembrando que quanto menor a magnitude de uma estrela maior o seu brilho. Assim, a estrela mais brilhante de uma constelação é a estrela “alfa”, α, seguida pela beta, β, depois δ, ε, e assim por diante. Para exemplo veja a figura abaixo. Figura 12: Mapa da constelação de cisne: a estrela α, Deneb, é a mais brilhante, seguida pela β, Albireo, e assim respectivamente. Em todas as constelações, suas estrelas recebem a ordem alfabética grega, como regra de nomenclatura oficial, esse método foi introduzido por J. Bayer, em 1603, em suas cartas celestes (mapa do céu). Com a invenção do telescópio e por estudos mais aprofundados do céu, o alfabeto grego tornou-se insuficiente para demarcar as estrelas no céu, foi quando o astrônomo inglês J. Flamsteed passou a utilizar um número seguido do genitivo latino da constelação. Por exemplo, temos a estrela Atlas da constelação de Touro, passou a se chamar “27 Tauri”, e Aldebaran é a “87 Tauri”. Esse é o método mais utilizado atualmente, mantendo-se o nome próprio para as estrelas mais brilhantes anteriormente designadas, porém a ordem de magnitude não é mais o fator determinante na nomenclatura da estrela, mas também a ordem da descoberta e a posição relativa dentro da constelação. Atualmente as constelações não possuem um grande significado como elas tinham na antiguidade. Hoje são utilizadas pela Astronomia para indicar direções do Universo e facilitar o reconhecimento do céu. Estrelas brilhantes como Canopus de Carina, Formalhaut de Peixe Austral e Sirius de Cão Maior são utilizadas para direcionamento de equipamentos na navegação espacial. Em 1930 a União Astronômica Internacional (UAI), em virtude da precisão exigida pela Astronomia moderna, dividiu geometricamente o céu em precisamente oitenta e oito constelações, preservando em grande parte os nomes herdados das civilizações antigas. Para facilitar o reconhecimento das constelações no céu, é sugerida a construção do planisfério em nossa oficina de astronomia. O planisfério é um instrumento astronômico, de fácil construção e com um custo pequeno, usado como mapa das constelações no céu. Com este utensílio, é possível reconhecer as constelações e ver as principais estrelas a qualquer dia do ano e em qualquer lugar do mundo. 3.4.2 Construção Hoje em dia são utilizados os programas de computadores para visualizar no céu todas as cartas celestes do ano e em qualquer lugar, um bom exemplo disto é o programa “Cartes du Ciel”, de fácil obtenção na internet e totalmente gratuito. Mas na ausência do computador, temos o planisfério, que é um utensílio astronômico com a finalidade de mapear as estrelas numa determinada hora a cada dia do ano (e sem gastar energia elétrica, para os mais econômicos!). Os materiais utilizados para confecção do planisfério são basicamente: • Os três desenhos para planisfério (figura 12 e anexo a este trabalho) • Tachinha • Pedaço de borracha • Tesoura • Cola Os três desenhos da figura 13 estão disponíveis em anexo a este trabalho, e também no site http://www.astronomos.com.br/zeca disponível na rede. Os três desenhos devem estar na mesma escala. Após recortar os dois mapas, cola-se um no outro, tomando o cuidado de alinhálos. É só observar os valores dos ângulos dos dois lados. De preferência não usar cola em demasia, pois o papel pode ficar ondulado. a) b) c) Figura 13: a) parte norte do mapa, b) parte sul do mapa e c) máscara. Na folha da máscara (figura 13c), recorta-se com um estilete apenas a linha curva correspondente à latitude de sua cidade (lembre-se que há diferença no céu segundo a latitude) e dobre a folha ao meio na altura da linha horizontal de latitude zero. Coloque tachinha no pequeno círculo na folha de máscara que existe na linha de latitude zero, junto ao mapa fixando-se, assim, os mapas com a folha de máscara. Deve-se tomar cuidado com a posição correta dos hemisférios. Pronto! O planisfério já pode ser utilizado. Na Figura 14 pode-se observar o planisfério montado. Figura 14: Planisfério Pronto. 3.4.3 Como utilizar Para posicionar o hemisfério na data e horário escolhido, deve-se seguir as seguintes etapas: i) Posicionar o lado indicado para o hemisfério sul. ii) Ajustar a data do dia escolhido no lado direito do planisfério, posição indicada pela letra “w” (abreviatura de oeste). O mapa mostrará o céu da 00h00 deste dia. iii) Para mostrar o céu no horário desejado, deve-se girar o mapa para a esquerda (sentido anti-horário) se for antes de meia-noite ou para a direita se for após a meia-noite. Cada linha radial representa uma hora. As linhas radiais estão distantes de 15º uma das outras. iv) Para um ajuste melhor considere a distância do seu meridiano para o meridiano do fuso horário girando esta diferença em graus para a direita se estiver a leste do meridiano do fuso ou para a esquerda se a oeste. Como há 365 dias do ano, cada grau que se move no planisfério corresponde a aproximadamente um dia. Por exemplo, se primeiro de janeiro estiver em cima da marca do oeste as constelações indicadas no planisfério corresponde ao céu a meia noite do primeiro dia do ano, movendo-se um grau, temos a meia noite do dia 02 de janeiro, movendo-se agora quatorze graus, temos o céu à meia noite do dia 15 de janeiro, ou à uma hora da manhã do dia primeiro de janeiro. Dessa maneira é possível visualizar o céu a cada hora em qualquer dia do ano (lembre-se que o céu se move do leste para o oeste com referencial na Terra). Este equipamento é ideal para realizações de observações astronômicas, pois possibilita ligar as estrelas como pontos para formar o desenho das constelações. 3.5 Foguete 3.5.1 Como utilizar As missões espaciais foram essenciais para a busca do conhecimento científico por parte da astronomia no século XX. Conhecer a nossa “vizinhança” seria uma questão muito maior que um sonho para a humanidade, seria conhecer parte também de nossa história, ter uma localização mais exata, ser capaz de viajar por este Universo e presenciar o que de mais belo a natureza nos escondeu. Por traz destes sonhos, no começo da década de cinqüenta, temos o início da corrida espacial, muito mais forte que os interesses científicos estavam os interesses políticos. Passávamos por uma parte da história da humanidade chamada de “Guerra Fria”, a luta ideológica entre duas nações poderosas consideradas potências econômicas, e opostas por dois sistemas de governo: Socialismo, com a União Soviética, e o Capitalismo, com os Estados Unidos. A corrida espacial teve o papel de transmitir ao mundo o símbolo do desenvolvimento, e mostrar qual das duas nações em questão seria a mais potente; mais do que isto, a nação campeã mostraria ao mundo que sua forma de governo seria a mais favorável à humanidade; o primeiro homem que chegasse à Lua determinaria, possivelmente, os rumos da história da humanidade. Um jogo político e econômico estava por traz das viagens espaciais, mas um jogo que traria com certeza um bom desenvolvimento científico, um jogo que todos poderiam sair ganhando. Após o final da guerra fria os interesses pelas missões no espaço passaram a ser um pouco mais “científicos”, tendo resultados que seriam de mais interesse a produção do conhecimento, que propriamente políticos. Nesta oficina será construído o foguete a propulsão de água ou ar. Os conceitos físicos presentes no lançamento deste foguete são praticamente os mesmos que são utilizados nos lançamentos dos foguetes convencionais, basicamente as leis de Newton da mecânica. Na figura 15 abaixo pode ser visto as três etapas do lançamento do foguete. Figura 15: Etapas básicas para o funcionamento do foguete de água. Como pode ser visto na figura 15, com o foguete preso, o ar é pressurizado pela bomba. No momento que o foguete é solto, o ar em alta pressão expulsa a água do interior do foguete, de modo que para haver conservação do momento o foguete é lançado em sentido contrário a água, praticamente em trajetória livre após poucos segundos, quando toda a água e o ar forem expelidos. Se colocar uma quantidade muito grande de água, quando o ar começar a expulsála, rapidamente perderá pressão, pois o volume que o ar ocupa no interior do foguete aumenta muito. Desta maneira, se o volume inicial de água for por volta de um terço do volume interno, o foguete subirá a uma altura maior. Há uma série de leis de estudo da física que poderiam ser aqui exploradas, como a dinâmica dos fluidos, a dependência da pressão com o volume do gás (ar) e as leis de movimento da mecânica. Mas não é o objetivo deste trabalho explorar de forma minuciosa estes conceitos. O intuito principal da construção deste equipamento é mostrar para os alunos os princípios básicos e como ocorre o lançamento de um foguete, as regras envolvidas nos lançamentos de foguetes, e por fim simular o lançamento de foguete. 3.5.2 Construção O foguete aqui construído é de garrafa pet de refrigerante com capacidade de 2 litros. Para fazer o lançamento é necessário o uso de uma base lançadora feita de tubo e conexões de encanamento doméstico. Por não ser objetivo deste trabalho (pois os alunos não a constroem numa oficina), os materiais utilizados e os procedimentos para sua confecção estão disponíveis no site www.geocities.com/brasilfoguete. Para construir o foguete a base de água e ar é preciso muita imaginação e criatividade, o que ficará a critério de cada um como escrever, pintar ou adornar o foguete; em essencial, para a construção deste equipamento precisaremos de: • Duas garrafas PET de 2 litros • Fita adesiva larga • Tesoura • Estilete • Papelão (empenas) • Barbante • Capricho! Uma das garrafas permanecerá intacta, porém a parte superior da outra garrafa servirá para ser colada a parte superior no fundo da garrafa intacta, fazendo assim o bico do foguete. As aletas (asas do foguete) podem ser feitas com papelão. Quanto mais baixo forem fixas, melhor ficará a aerodinâmica do foguete. Figura 16: Foguete concluído; os enfeites e a pintura a tinta óleo são adicionais. Fixando-as com fita adesiva, o mais baixo possível, como na figura 16 abaixo. O resto é imaginação! 3.5.3 Como utilizar Coloque o foguete na boca da base lançadora e prenda com as presilhas. Encha de ar, com auxílio de uma bomba, até uma pressão favorável a um bom lançamento (isso depende do tipo de garrafa que se tem), retire a bomba, e solte o foguete descendo a luva de conexão que segura as presilhas e prende o foguete. Pronto, bons lançamentos e muita atenção para segurança! 4. CONSIDERAÇÕES FINAIS O objetivo central deste trabalho é a confecção das oficinas, tarefa esta concluída com bastante êxito. Em nossa opinião, o uso destas oficinas poderá auxiliar o ensino de astronomia nas escolas. Esta nossa crença advém do fato de termos aplicado estas oficinas em algumas escolas no Distrito Federal, e a primeira impressão é que serviu como um bom motivador para o estudo dos temas. Este trabalho pode servir também como semente para um futuro trabalho de verificação dessa nossa crença, ou seja, o uso de oficinas serve como um excelente catalisador no processo de aprendizagem do tema Astronomia. BIBLIOGRAFIA ARRUDA, Sergio M. & LABURU, Carlos E. Considerações sobre a função do experimento no ensino de ciências. Educação para ciência, v.1, n.6: Abr,1996,p.53-59. BRODY, Eliot B. & BRODY. Arnold R., As sete maiores descobertas científicas da história, São Paulo: Companhia das Letras, 1999. BONJORNO, José Roberto, et al. Física: história e cotidiano. São Paulo: FTD, 2003. MEC, SEMTEC. Parâmetros Curriculares Nacionais: Ensino Médio. Brasília: MEC, 2004. CANIATO, Rodolpho. O Céu. Campinas: FTPT, 1978. CANALLE, J.B.G. O sistema solar numa representação teatral, Caderno Catarinense de Ensino de Física, Vol. 11, n o 1, 27 - 32, abril, 1994. FIAÇA, Amâncio C.S., PINO, Elisabete Dal, JUNIOR, Laerte Sondré e PEREIRA, Vera Janteco. Astronomia: uma visão geral do Universo. 2 ed. São Paulo: Edusp, 2003. FILHO, Kepler de S. Oliveira e SARAIVA, Maria de Fátima Oliveira. Astronomia e Astrofísica. Porto Alegre: UFRGS, 2003. MOURAO, Ronaldo R. de Freitas. O livro de ouro do Universo. Rio de Janeiro: Ediouro, 2001. PINTO, Alexandre Custódio, LEITE, Cristina, SILVA, José Alves. PEC: Programa Educação e Cidadania para todos, São Paulo: Editora Brasil, 2005. SACCONI, Luiz Antônio. Minidicionário Sacconi de Língua Portuguesa. São Paulo: Editora Atual, 1996 TIPLER, Paul. Física para Cientistas e Engenheiros. Rio de Janeiro: Guanabara, 1991. TIPLER, Paul, LLEWELLYN, Ralph A. Física Moderna 3a edição. Rio de Janeiro: LTC, 2001. Corrida Espacial. Revista Virtual Tudo Sobre. Disponível em: <http://www.adorofisica.com.br/trabalhos/fis/equipes/corridaespacial/corridaespacial.htm> último acesso em 26 mai. 06 Agencia espacial brasileira. Disponível em <http://www.aeb.gov.br/> último acesso em 22 abr. 2006 AGUSTONI, José Serrano. Astronomia e Astronáutica. Disponível em: <http://www.astronomos.com.br/zeca> ultimo acesso em: 06 mar. 2006 CANALLE, João Batista G. Apresentações em congresso. Disponível em: http://www2.uerj.br/~deq/canalle/apresentacoes.htm acesso em 26 out.2006 PINTO JR, Eduardo Lourenço. Brasil foguetes. Disponível em: <http://www.geocities.com/brasilfoguete > acesso em: 15 març. 2006. CALVIN, J. Hamilton. Vistas do Sistema Solar. Disponível em: <http://www.solarviews.com/portug/homepage.htm > acesso em 10 fev. 2006 ROSHENTAL, Bruno. Os Movimentos e as distancias. Disponível em: <http://bruno.rosenthal.vilabol.uol.com.br/lua_movimentos.htm > acesso em 15 mar. 2006 GRIMM, Alice Marlene. Movimentos da Terra, Estações. Disponível em: <http://fisica.ufpr.br/grimm/aposmeteo/cap2/cap2-1.html > acesso em 14 mar. 2006 Foguetes a água. Disponível em <http://www.projetofoguete.cjb.net/> acesso em 22 set. 2006 Anexos HEMISFÉRIO SUL HEMISFÉRIO NORTE PLANISFÉRIO CONTROLE DO