1. Matrizes

Propaganda
UNIVERSIDADE DO ALGARVE – ESCOLA SUPERIOR DE TECNOLOGIA
APONTAMENTOS
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
(I. Matrizes)
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Índice
1. Matrizes ........................................................................................................... 1
1.1 Definição e generalidades.................................................................................. 1
1.2 Álgebra das matrizes ......................................................................................... 4
1.3 Dependência e independência de linhas e colunas de uma matriz....................... 9
1.4 Característica de uma matriz............................................................................ 14
1.5 Inversão de matrizes ........................................................................................ 19
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
Matrizes
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
1. Matrizes
1.1 Definição e generalidades
A informação em ciências e, em particular, na matemática é muitas vezes organizada em linhas e
colunas que formam tabelas de dados. Essas tabelas podem ser apresentadas em forma de matrizes.
Um exemplo são as tabelas de contingência ( m × n ) onde as frequências observadas se distribuem
por m linhas e n colunas. A seguinte tabela com três linhas e sete colunas descreve o número de
horas que um estudante despende a estudar três disciplinas durante uma determinada semana:
2ª feira 3ª feira 4ª feira 5ª feira 6ª feira Sábado Domingo
Álgebra
2
3
2
4
1
4
2
Análise I
0
3
1
4
3
2
2
Fisica
4
1
3
1
0
0
2
A partir desta última, suprimido os cabeçalhos, podemos construir a seguinte tabela
( 3 × 2 ),
denominada matriz:
2 3 2 4 1 4 2
0 3 1 4 3 2 2 .
4 1 3 1 0 0 2
Por outro lado, apesar das matrizes serem muitas vezes tabelas de dados numéricos que resultam de
observações físicas, podem ocorrem em diferentes contextos matemáticos. Por exemplo, como
veremos, toda a informação necessária para resolver o sistema de equações
5x + y = 3
2x − y = 1
está contida na matriz
5 1 3
,
2 −1 1
a solução do sistema é obtida realizando operações apropriadas na matriz. Neste contexto, as
matrizes são particularmente importante no desenvolvimento de programas computacionais para se
resolverem sistemas de equações lineares. Contudo, as matrizes não são apenas uma ferramenta
utilizada para este propósito, estas podem ser vistas como objectos matemáticos por direito,
existindo uma vasta e importante teoria que lhes esta associada que tem uma grande variedade de
aplicações.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
1/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Definição1: Dá-se o nome de matriz ao quadro onde ( m × n ) elementos (números ou expressões) se
distribuem, ordenadamente, segundo m linhas e n colunas, e representa-se por:
A=
a11
a21
a12
a22
........ a1n
........ a2 n
am1
am 2
........ amn
ou, abreviadamente: A( m×n ) = [ aij ] , i = 1, 2,..., m e j = 1, 2,..., n .
( m× n )
• Generalidades:
a) A aij designa-se por elemento genérico, aos números i e j dá-se o nome de índices naturais,
o primeiro representa a ordem da linha e o segundo a ordem da coluna;
b) Caso m ≠ n a matriz diz-se rectangular (matriz tipo ( m × n )), caso m = n a matriz diz-se
quadrada (matriz tipo ( n × n ) ou de ordem n), estas últimas são particularmente importantes.
c) De entre as matrizes rectangulares há a destacar a matriz linha e a matriz coluna,
b11
A = [ a11
b21
a12
a13
... a1n ](1×n ) e B = b31
, respectivamente.
bm1
( m×1)
d) Numa matriz quadrada dá-se o nome de elementos principais aos elementos aij , em que
i = j ( aii ). Eles formam a diagonal principal, que vai do canto superior esquerdo ao canto
inferior direito.
Diagonal secundária
( n × n)
Diagonal principal
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
2/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
e) Os elementos que se distribuem simetricamente em relação à diagonal principal chamam-se
elementos opostos. O elemento aij é oposto do elemento a ji . Por exemplo, na matriz ( 3 × 3 ),
a11
a 21
a31
a12
a 22
a 32
a13
a 23 , os elementos a12 e a21 são opostos.
a 33
Caso aij = a ji , ∀i ≠ j , a matriz diz-se simétrica.
f) Sejam A e B duas matrizes do mesmo tipo (têm o mesmo número de linhas e de colunas),
A = B ⇔ a ij = bij , isto é: duas matrizes só podem ser iguais se forem do mesmo tipo e os
seus elementos homólogos iguais.
Obs.1: Elementos homólogos de duas matrizes são os elementos com índices iguais.
g) Matriz triangular. Dá-se o nome de matriz triangular à matriz quadrada cujos elementos
situados de um dos lados da diagonal principal são todos nulos e entre os elementos do outro
lado há pelo menos um que não é nulo. Assim sendo temos dois tipos de matrizes
triangulares, a matriz triangular superior e a matriz triangular inferior. Exemplificando
com matrizes do tipo ( 3 × 3 ):
matriz triangular superior:
a b 0
0 c e ; e matriz triangular inferior:
0 0 d
a 0 0
0 b 0 .
d 0 0
h) Matriz diagonal. É a matriz quadrada A( n×n ) = [aij ] em que; aij = 0 se i ≠ j e ∃aij ≠ 0 .
Exemplificando com uma matriz do tipo ( 3 × 3 ),
a 0 0
D= 0 b 0 .
0 0 0
De entre as matrizes diagonais há que destacar as seguintes:
Matriz Identidade, é a matriz diagonal que os elementos da diagonal principal são todos 1 e
representa-se por, I. Por exemplo:
1 0 0
I3 = 0 1 0 ;
0 0 1
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
3/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Obs.2: Para dar ênfase à dimensão da matriz identidade escreve-se I ( n×n ) , ou apenas I n , uma
vez que a matriz é quadrada.
Matriz Escalar, é a matriz diagonal na qual os elementos da diagonal principal são todos
iguais, mas diferentes de 1 e de 0. Por exemplo:
2 0 0
E= 0 2 0 .
0 0 2
i) Matriz Nula, é a matriz formada apenas por zeros. Por exemplo:
O(3×3)
0 0 0
= 0 0 0 .
0 0 0
Obs.3: Se for importante dar ênfase à dimensão da matriz nula, escreve-se O( m×n ) .
1.2 Álgebra das matrizes
Nesta secção vamos definir as seguintes operações com matrizes: soma de matrizes, multiplicação
de uma matriz por um escalar, multiplicação de matrizes e transposição de matrizes.
Definição2: Dadas duas matrizes A( m×n ) e B( m×n ) , do mesmo tipo, define-se soma das duas matrizes,
como sendo a matriz C = A + B , tal que o elemento genérico cij = aij + bij , i = 1,..., m e j = 1,..., n ;
ou seja, a matriz C obtém-se somando os elementos homólogos das matrizes A e B. Claro que, se A
e B são do tipo ( m × n ) então também C = A + B é do tipo ( m × n ).
1
−3 −1
0
Exemplo1: Some as seguintes matrizes A = −2 −3
5 6
(3× 2)
e B= 5
1
.
0
−2
(3× 2)
Resolução: A soma (adição) das duas matrizes é possível porque são ambas do mesmo tipo ( 3 × 2 ),
− 2 −1
C = A + B = 3 − 3 , que continua a ser uma matriz ( 3 × 2 ).
6
4
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
4/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Propriedades da soma de matrizes. Admitindo que a dimensão das matrizes envolvidas permite
que as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:
i) Associatividade, A + ( B + C ) = ( A + B) + C ;
ii) Comutatividade, A + B = B + A ;
iii) Elemento neutro, A + O = O + A = A (O matriz nula) ;
iv) Elemento simétrico, A + (− A) = (− A) + A = O ;
v) O − A = − A ;
vi) A = B e C = D então A + C = B + D .
Repare-se que as propriedades da adição de matrizes são idênticas às da adição em
Definição3: A multiplicação de uma matriz A por um escalar λ ∈
tipo, cujo elemento genérico é:
.
é uma nova matriz, do mesmo
λ aij . Ou seja, multiplica-se uma matriz por um escalar
multiplicando todos os seus elementos por esse escalar, λ A = [λ aij ] , i = 1,..., m e j = 1,..., n .
1
0
Exemplo2: Sendo A = −2 −3
5 6
1
(3× 2)
0
e λ = 2 , então: λ A = 2 × −2 −3
5 6
2
0
= −4 −6
(3×2)
10 12
.
(3×2)
Propriedades da multiplicação de uma matriz por um escalar. Admitindo que a dimensão das
matrizes A e B permite que as operações possam ser efectuadas, então, para λ , µ ∈
, são válidas
as seguintes regras:
i) Distributividade, λ ( A + B) = λ A + λ B ;
ii) Distributividade, (λ + µ ) A = λ A + µ A ;
iii) Associatividade, λ ( µ A) = (λµ ) A ;
iv) 1A = A ;
v) A = B
λ A = λB .
Definição4: Dadas as matrizes, A( m×n ) e B( p×q ) , o produto de matrizes A × B existe se n = p e o seu
resultado é a matriz C do tipo ( m × q ) cujo elemento genérico é cik , o qual se obtém multiplicando a
linha i da matriz A (primeira matriz), pela coluna k da matriz B (segunda matriz).
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
5/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Uma vez que, a multiplicação de matrizes envolve a multiplicação de (linhas da 1ª matriz)×(colunas
da 2ª matriz), torna-se necessário que o número de elementos das linhas da 1ª matriz (n – nº de
colunas) coincida com o número de elementos das colunas da 2ª matriz (p – nº de linhas).
Em resumo:
Por exemplo,
A(3×3) × B(3×2)
a11
= a21
a31
a12
a22
a32
a13
b11
a23 × b21
a33
b31
b12
c11
b22 = c21
b32
c31
c12
c22 = C(3×2) ,
c32
para calcular c11 multiplica-se a 1ª linha (1 × 3) da matriz A pela 1ª coluna (3 × 1) da matriz B,
obtendo-se uma matriz (1 × 1) , ou seja, um escalar,
c11 = [ a11
b11
a12
a13 ](1×3) × b21
b31
= ( a11 × b11 + a12 × b21 + a13 × b31 ) ∈
(3×1)
Por raciocínio análogo calculam-se os restantes elementos de C, cik =
2 3 5
Exemplo3: Seja A =
1 0 −1
.
n
j =1
aij b jk .
1 −1
(2×3)
e B= 2
3
calcule o produto: C = A × B .
2
3
(3× 2)
Resolução: O produto existe porque o número de colunas da 1ª (matriz A) coincide com o número
de linhas da 2ª (matriz B) e o resultado é uma matriz do tipo ( 2 × 2 ), A(2×3) × B(3×2) = C(2×2) . Os
elementos da matriz C são calculados da maneira seguinte:
c11 = (linha 1 da1ªmatriz)×(coluna 1 da 2ª matriz) = 2 × 1 + 3 × 2 + 5 × 3 = 23
c12 = (linha 1 da1ªmatriz)×(coluna 2 da 2ª matriz) = 2 × ( −1) + 3 × 2 + 5 × 3 = 19
c21 = (linha 2 da1ªmatriz)×(coluna 1 da 2ª matriz) = 1 × 1 + 0 × 2 + ( −1) × 3 = −2
c22 = (linha 2 da1ªmatriz)×(coluna 2 da 2ª matriz) = 1 × ( −1) + 0 × 2 + ( −1) × 3 = −4
logo: C = A × B =
2 3
1 −1
5
1 0 −1
× 2
(2×3)
3
=
2
3
23 19
−2 −4
.
(2× 2)
(3×2)
Exercício1: Calcule B × A e conclua quanto à comutatividade da multiplicação de matrizes.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
6/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Exemplo4: A Ana e o Carlos planeiam comprar fruta para a toda semana. Cada um deles quer
comprar algumas maçãs, tangerinas e laranjas, porém em quantidades diferentes. A tabela1 ilustra o
que pretendem comprar em kg. Nas proximidades existem duas mercearias de fruta – a Beinha e a
Vanda – cujos preços em euros estão apresentados na tabela2. Quanto gastarão a Ana e o Carlos
para fazerem as suas compras em cada uma das mercearias.
Tabela2 – Preços nas duas mercearias
Beinha Vanda
Maçã
0,60
0,65
Tangerina 0,20
0,20
Laranja
0,20
0,25
Tabela1 – Quantidades em kg de fruta
Maçãs Tangerinas Laranjas
Ana
6
3
10
Carlos
4
8
5
Resolução: Se a Ana comprar à da Beinha, gastará 6 × 0, 60 + 3 × 0,30 + 10 × 0, 20 = 6,50 euros, se
comprar à da Vanda gastará 6 × 0, 65 + 3 × 0, 20 + 10 × 0, 25 = 7, 00 euros.
O Carlos, à da Beinha gastará, 4 × 0, 60 + 8 × 0, 30 + 5 × 0, 20 = 5,80 euros, e à da Vanda, gastará
4 × 0, 65 + 8 × 0, 20 + 5 × 0, 25 = 5, 45 euros.
Provavelmente, a Ana fará as suas compras à da Beinha e o Carlos à da Vanda. A forma (produto
escalar) dos cálculos e a maneira como os dados estão apresentados nas tabelas sugere que a
multiplicação de matrizes funciona aqui. Se organizarmos as informações dadas numa matriz de
intenções de compra, C, e numa matriz de preços, P, teremos
6 3 10
C=
4 8 5
0, 60 0, 65
(2×3)
e P = 0, 30 0, 20
0, 20 0, 25
.
(3× 2)
Os cálculos efectuados em cima são equivalentes a
C×P =
0, 60 0, 65
6 3 10
4 8
5
× 0,30 0, 20
(2×3)
0, 20 0, 25
=
6,50 7, 00
5,80 5, 45
,
(3×2)
que podem ser organizados na tabela
Tabela3 – Gastos nas duas mercearias
Beinha Vanda
Ana
6,50
7,00
Carlos 5,80
5,45
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
7/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Propriedades da multiplicação de matrizes. Admitindo que a dimensão das matrizes envolvidas
permite que as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:
i) Associatividade, ( A × B ) × C = A × ( B × C ) ;
ii) Não comutatividade, pode existir A × B mas não B × A , ou existirem mas serem diferentes;
iii) Distributividade em relação à adição de matrizes,
A × (B + C) = A × B + A × C
e
(B + C ) × A = B × A + C × A ;
iv) λ ( A × B ) = (λ A) × B = A × (λ B ) , λ ∈
;
v) A × O = O e O × A = O ou A( n×n ) × O = O × A( n×n ) = O (matriz nula);
vi) A × I = A e I × A = A ou A( n×n ) × I = I × A( n×n ) = A( n×n ) (a matriz identidade I é o elemento
neutro);
vii) Ak = A × A × ... × A ; ( k > 0 ) desde que A seja quadrada;
k vezes
viii) A = I (matriz identidade).
0
Definição5: Chama-se matriz transposta de uma matriz A( m×n ) à matriz que dela se obtém trocando,
ordenadamente, as linhas com as colunas, e representa-se por A(Tn×m ) .
Exemplo5: A matriz transposta da matriz A é: A =
2
2
3 5
1 −1 0
1
A = 3 −1
T
(2×3)
5
0
.
(3×2)
Propriedades da transposição de matrizes. Admitindo que a dimensão das matrizes permite que
as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:
i) ( AT )T = A ;
ii) (λ A)T = λ AT ( λ constante);
iii) ( AT ) k = ( Ak )T ;
iv) ( A + B)T = AT + BT ;
v) ( A × B)T = BT × AT ;
vi) ( A × B × ... × X )T = X T × ... × BT × AT .
Obs.4: Numa matriz quadrada se A = AT ⇔ A é simétrica.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
8/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Definição6: Chama-se traço de uma matriz quadrada à soma dos elementos da diagonal principal,
tr ( A) =
n
i =1
aii .
Propriedades do traço de uma matriz. Admitindo que a dimensão das matrizes permite que as
operações indicadas possam ser efectuadas, então são válidas as seguintes regras:
i) tr ( A + B) = tr ( A) + tr ( B ) ;
ii) tr (α A) = α tr ( A) ;
iii) tr ( AB) = tr ( BA) ;
iv) tr ( AT ) = tr ( A) .
1.3 Dependência e independência de linhas e colunas de uma matriz
Considere-se a matriz A do tipo ( m × n ), A =
a11
a12
........ a1n
a21
a22
........ a2 n
am1
am 2
........ amn
. Representando as m
( m× n )
linhas da matriz por,
L1 = [ a11
a12
a1n ](1×n ) , L2 = [ a21
a22
a2 n ](1×n ) ,..., Lm = [ am1
am 2
amn ](1×n ) ,
chama-se combinação linear das m linhas a qualquer expressão do tipo:
L = λ1 L1 + λ2 L2 + ....... + λm Lm (matriz linha),
em que λ1 , λ2 ,..., λm ∈
.
Considere-se, agora, a matriz linha nula L0 = [0 0
0] . É, então, possível construir a equação
λ1 L1 + λ 2 L2 + ....... + λ m Lm = L0 .
Há dois casos a considerar, para as soluções da equação anterior:
1º caso: a única maneira de obter a linha nula é fazer λ1 = λ2 = ... = λm = 0 na combinação linear.
Neste caso, as linhas dizem-se linearmente independentes (L.I.).
2º caso: a linha nula pode ser obtida da combinação linear anterior, sem ser necessário considerar
zeros todos os escalares λi . Neste caso, as linhas dizem-se linearmente dependentes (L.D.).
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
9/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Conclusão:
Se: λ1 L1 + λ 2 L2 + ....... + λ m Lm = L0 ⇔ λ1 = λ2 = ... = λm = 0
as linhas da matriz dizem-se
linearmente independentes, caso contrário (caso se possa obter a linha nula L0 sem ser necessário
considerar zeros todos os escalares λi ) as linhas dizem-se linearmente dependentes.
1 2 −2
Exemplo6: Estude a matriz A = 3 −1 4 quanto à dependência linear das suas linhas.
3 6 −6
Resolução: Sendo a matriz A(3×3) , devemos resolver a equação λ1 L1 + λ2 L2 + λ3 L3 = L0 , visando
encontrar os λ1 , λ2 , λ3 ∈
, para o quais a equação anterior se verifique,
λ1 [1 2 −2] + λ2 [3 −1 4] + λ3 [3 6 −6] = [ 0 0 0] ⇔
⇔ [ λ1
−2λ1 ] + [3λ2
2λ1
⇔ [ λ1 + 3λ2 + 3λ3
−λ2
2λ1 − λ2 + 6λ3
4λ2 ] + [3λ3
6λ3
−6λ3 ] = [ 0 0 0] ⇔
−2λ1 + 4λ2 − 6λ3 ] = [ 0 0 0]
desta igualdade resulta o seguinte sistema
λ1 + 3λ2 + 3λ3 = 0
2λ1 − λ2 + 6λ3 = 0
−2λ1 + 4λ2 − 6λ3 = 0
λ2 = 0 λ1 = −3λ3 , λ3 ∈
.
O sistema é possível e indeterminado, tem tantas soluções quantos os valores atribuídos a λ3 , por
exemplo, para λ3 = 1
λ1 = −3 . Portanto, a equação é satisfeita para λ1 = −3, λ2 = 0 e λ3 = 1 .
Assim, para λi não simultaneamente nulos verifica-se a igualdade e, consequentemente, as linhas
são linearmente dependentes. E, λ1 L1 − 3λ3 L3 = L0 ⇔ λ1 L1 = 3λ3 L3 , L1 é combinação linear de L3 .
Repare-se que a equação λ1 L1 + λ2 L2 + λ3 L3 = L0 , do exercício anterior, é equivalente à equação
[ λ1
a11
λ2
a12
λ3 ](1×3) a21 a22
a31
a32
a13
= [ 0 0 0](1×3) .
a23
a33
(3×3)
O que pode ser estendido a matrizes do tipo (n × m) .
O mesmo raciocínio pode aplicar-se às colunas da matriz A. Assim, se a combinação linear das
colunas de A coincide com a coluna nula, apenas quando todos os escalares forem nulos ( λi = 0 )
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
10/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
então as colunas de A são L.I.. Por outro lado, se for possível obter a coluna nula sem ser necessário
utilizar apenas escalares nulos, as colunas serão L.D..
Analiticamente, sendo C1 , C2 ,..., Cn as colunas de A e C0 a coluna nula :
C1 =
a11
a 21
, C2 =
a m1
a12
a 22
, ..., C n =
am2
a1n
a2n
e C0 =
0
0
,
0
a mn
se
λ1C1 + λ2 C2 +
+ λn Cn = C0 ⇔ λ1 = λ2 = ... = λn = 0 ,
as colunas da matriz A são L.I.. Caso contrário são L.D..
1 2 1
Exemplo7: Estude a matriz A = 4 2 3
−2 6 −1
quanto à dependência linear das suas colunas.
Resolução: Temos que calcular λ1 , λ2 , λ3 ∈
tal que λ1C1 + λ2 C2 + λ3C3 = C0 ,
1
2
1
0
λ1
2λ2
λ3
0
λ1 + 2λ2 + λ3
0
λ1 4 + λ2 2 + λ3 3 = 0 ⇔ 4λ1 + 2λ2 + 3λ3 = 0 ⇔ 4λ1 + 2λ2 + 3λ3 = 0
−2
6
−1
0
−2λ1
6λ2
−λ3
0
−2λ1 + 6λ2 − λ3
0
donde
λ1 + 2λ2 + λ3 = 0
4λ1 + 2λ2 + 3λ3 = 0
−2λ1 + 6λ2 − λ3 = 0
λ1 = λ2 = λ3 = 0 .
O sistema é possível e determinado, admite como solução única (a equação é satisfeita apenas se)
λ1 = λ2 = λ3 = 0 . Assim, uma vez que todos os λi são simultaneamente nulos as colunas da matriz
são linearmente independentes.
Repare-se que a equação λ1C1 + λ2 C2 + λ3C3 = C0 , do exercício anterior, é equivalente à equação
a11
a12
a13
a21
a22
a23
a31
a32
a33
(3×3)
λ1
λ2
λ3
0
= 0
(3×1)
0
.
(3×1)
Analogamente para matrizes do tipo (n × m) .
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
11/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
De um modo geral, as filas de uma matriz dizem-se linearmente independentes quando nenhuma
delas se pode escrever como combinação linear das restantes e linearmente dependente quando
alguma delas se pode escrever como combinação linear das demais.
Propriedades da dependência/independência linear das filas de uma matriz
i) Se uma das linhas L1 , L2 ,..., Li ,..., Lm é formada apenas por zeros, então as linhas são linearmente
dependentes (idem para as colunas);
ii) Se algumas das linhas L1 , L2 ,..., Li ( i < m ) são linearmente dependentes, então todas o serão
(idem para as colunas);
iii) A dependência ou independência linear das linhas (colunas) de uma matriz, não se altera se
trocarmos a ordem dessas linhas (colunas);
iv) Se as linhas L1 , L2 ,..., Li ,..., Lm são linearmente dependentes (independentes), então também o
serão as linhas: L1 , L2 ,..., λ Li ,..., Lm , λ ∈
\ {0} (idem para as colunas);
v) Se as linhas L1 , L2 ,..., Li ,..., Lk ,..., Lm são linearmente dependentes (independentes), então
também o serão as linhas L1 , L2 ,..., Li + Lk ,..., Lk ,..., Lm (idem para as colunas);
vi) Se as linhas L1 , L2 ,..., Li ,..., Lm são linearmente dependentes, então algumas delas podem-se
escrever como combinação linear das restantes (idem para as colunas);
vii) As linhas (colunas) de uma matriz triangular (superior ou inferior), com os elementos da
diagonal principal diferentes de zero, são linearmente independentes;
viii) As linhas (colunas) de uma matriz diagonal (diferente da matriz nula), são linearmente
independentes;
ix) Seja A = [ A1 | A2 ] :
•
Se as linhas de A1 e de A2 são linearmente independentes, então as linhas de A também
são linearmente independentes;
•
Se A1 ou A2 é uma matriz triangular superior (inferior), tal que os elementos da diagonal
principal são diferentes de zero, então as linhas da matriz A são linearmente
independentes;
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
12/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
x) Seja A =
•
A1
Matrizes
:
A2
Se na matriz A as colunas da submatriz A1 são linearmente independentes, então as
colunas de A também são linearmente independentes;
•
Se A1 ou A2 é uma matriz triangular superior (inferior), tal que os elementos da diagonal
principal são diferentes de zero, então as colunass da matriz A são linearmente
independentes.
1 3 0 0 5
Exemplo8: Estude a dependência linear da matriz A = 0 0 1 0 −2 .
0 0 0 1 2
Resolução: A matriz não é quadrada, é uma matriz ( 3 × 5 ) vamos primeiro estudar a dependência
das linhas. Resolvendo a equação λ1 L1 + λ2 L2 + λ3 L3 = L0 , vem λ1 = λ2 = λ3 = 0 . Portanto, as 3
linhas são linearmente independentes.
Quanto à dependência das colunas, ao resolver equação λ1C1 + λ2 C2 + λ3 C3 + λ4 C4 + λ5 C5 = C0 ,
vem, por exemplo, λ1 + 3λ2 + 5λ5 = 0 λ3 = 2λ5
λ4 = −2λ5 . Portanto, as 5 colunas são
linearmente dependentes. Prova-se que, apenas 3 colunas são linearmente independentes.
Como a matriz é ( 3 × 5 ), ou seja, o número de colunas é maior que o número de linhas, é razoável
pensar que o número máximo de colunas que podem ser linearmente independentes seja 3. De facto,
no sistema que resulta da equação λ1C1 + λ2 C2 + λ3 C3 + λ4 C4 + λ5 C5 = C0 , temos 3 equações para 5
incógnitas. Enquanto que para as linhas, o sistema resultante tem 3 equações para 3 incógnitas.
Este último exemplo ilustra um resultado muito importante: Numa matriz, o número máximo de
linhas linearmente independentes é igual ao número máximo de colunas linearmente
independentes.
Exercício2: Transponha a matriz do exemplo anterior e estude a dependência linear das colunas e
das linhas.
Do exercício anterior, facilmente se vê que estudar a dependência linear da linhas de uma matriz é o
mesmo que estudar a dependência linear das colunas da sua transposta e vice-versa.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
13/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
1.4 Característica de uma matriz
Nesta secção introduz-se o conceito de característica de uma matriz e apresenta-se um processo para
o seu cálculo.
Definição7: Dá-se o nome de característica de uma matriz A ao número máximo de filas paralelas
linearmente independentes que figuram nessa matriz. Representa-se por r ( A) .
Como em matrizes triangulares, o número de filas (linhas ou colunas) paralelas linearmente
independentes (a característica) é igual ao número de elementos da diagonal principal diferentes de
zero, pode partir-se deste facto para calcular a característica de uma matriz.
Definição8: Condensar uma matriz é o processo que consiste em dar à matriz, através de operações
elementares, uma forma em que figure nela uma matriz triangular (superior ou inferior) da maior
ordem possível com elementos principais não nulos.
Operações elementares
Chamam-se operações elementares, efectuadas sobre uma matriz, ao conjunto de operações que não
alterem a dependência ou independência das linhas ou colunas (portanto, não alteram a
característica da matriz). Algumas operações elementares são:
a)
Troca entre si de duas filas paralelas de uma matriz;
b)
Multiplicação ou divisão de qualquer fila por uma constante diferente de zero;
c)
Soma dos elementos homólogos de filas paralelas depois de multiplicados por factores
constantes diferentes de zero.
Processo de condensação
O processo de condensação é constituído por várias fases – reduções – onde se vão anulando os
elementos abaixo e/ou acima da diagonal principal da matriz quadrada inicial ou de uma submatriz
quadrada da maior ordem possível (caso a matriz inicial seja rectangular).
Como numa matriz, o número máximo de linhas linearmente independentes é igual ao número
máximo de colunas linearmente independentes, a característica de uma matriz pode calcular-se
tanto por linhas como por colunas.
Na prática é, pois, indiferente efectuar condensação vertical (na qual se reduzem a zero elementos
situados na mesma coluna que o redutor) ou condensação horizontal (em que os elementos a anular,
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
14/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
estão na mesma linha que o redutor) para determinar a característica de uma matriz. O objectivo a
atingir (usando operações elementares) é dar à matriz uma forma em que figure uma matriz ou
submatriz triangular de elementos principais não nulos e da maior ordem possível.
Vamos exemplificar a condensação vertical. Considere-se a matriz A( m×n ) que se pretende condensar
para determinar a sua característica
A=
a11
a12
.... a1n
a21
a22
...
a2 n
am1
am 2
...
amn
.
( m× n )
a) A partir de a11 ≠ 0 , ( caso isso não aconteça, trocam-se entre si duas ou mais filas paralelas para
colocar no seu lugar um elemento não nulo, de preferência 1 ou –1), a que se dá o nome de
elemento redutor (pivot), adiciona-se a primeira linha a todas as restantes, multiplicada por factores
tais que se anulem todos os elementos seguintes da primeira coluna (abaixo de a11 ). Portanto:
A
a11
0
a12
a22
a1n
a2 n
0
am 2
amn
;
b) Procede-se com a22 em relação à 2ª coluna como se procedeu com a11 em relação à 1ª coluna:
A
a11
0
0
a12
a22
0
a13
a23
a33
a1n
a2 n
a3n ;
0
0
am3
amn
c) Procede-se de modo análogo para os restantes aii até que a condensação termine porque não há
mais linhas ou porque as linhas que existem são todas formadas por zeros. A matriz original terá
uma forma onde figura nela uma matriz ou submatriz triangular da maior ordem possível com
elementos principais não nulos:
A
a11
0
a12
a22
a1r
a2 r
a1m
a2 m
0
0
arr
arm
0
0
0
0
0
;
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
15/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
d) Como todas as linhas e colunas de uma matriz triangular, com elementos principais significativos
(não nulos), são linearmente independentes, chegada ao seu termo, a condensação indica qual o
número máximo de filas paralelas de uma matriz que podem ser linearmente independentes (a
característica da matriz). Assim, a característica será dada pela dimensão da maior matriz
triangular, com elementos principais não nulos, que foi possível instituir na matriz A (indicada na
alínea c) em segundo plano),
Característica da matriz A = r ( A) = r .
Obs.5:
• A característica de uma matriz A é igual à característica da sua transposta AT ;
•
Exceptuando a matriz nula que tem r (O) = 0 , qualquer matriz tem r ≥ 1 ;
•
Para se calcular a característica de uma matriz esta não tem que ser quadrada;
•
Uma matriz quadrada de ordem n, tem no máximo característica n;
•
Diz-se que duas matrizes A e B são equivalentes, ( A
B , A ↔ B ) se r ( A) = r ( B) .
1 2 1
Exemplo9: Calcule da característica da matriz A = 4 2 3 .
−2 6 −1
Resolução: Para determinar a característica de uma matriz aplicam-se sucessivamente as operações
elementares, até se chegar a uma matriz equivalente à original onde figure nela uma matriz
triangular da maior ordem possível com elementos principais não nulos. A que se dá o nome de
condensação da matriz.
A partir do elemento redutor a11 = 1 , vamos reduzir a zero os restantes elementos da 1ª coluna. Para
reduzir o elemento a21 = 4 a zero, multiplica-se a 1ª linha por (−4) e soma-se com a 2ª linha.
Simbolicamente:
Procedendo de maneira análoga para o elemento a31 = −2 , multiplicando a primeira linha por
(+2) e somando a 3ª linha vem
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
16/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Analogamente, a partir do novo elemento redutor a22 = −6 vamos reduzir a zero o elemento
a32 = 10 . A fim de facilitar os cálculos vamos, por exemplo, trocar a 2ª coluna pela 3ª. Neste caso
o elemento redutor será a22 = −1 . Obtemos
1 1 2
0 −1 −6
0 1 10
1 1 2
0 −1 −6
0 0 4
A,
o que completa a condensação, uma vez que a matriz resultante é triangular. A matriz dada A é
equivalente à matriz triangular obtida. Como numa matriz triangular, com elementos da diagonal
principal diferentes de zero, todas as filas são independentes, e como a característica de uma
matriz é igual ao número de filas independentes, então a característica da matriz é 3, r ( A) = 3 .
Dependência linear com recurso à condensação
Pelo que foi referido, através do recurso à condensação, ao cálculo da característica de uma matriz,
é possível concluir acerca da dependência ou independência linear das filas de uma matriz.
Matrizes quadradas: Seja A uma matriz quadrada de ordem n.
i) Quando r ( A) = n , as filas são linearmente independentes e a matriz designa-se por matriz
regular;
ii) Quando r ( A) < n , as filas são linearmente dependentes e a matriz designa-se por matriz
singular.
Matrizes rectangulares: Seja A uma matriz rectangular do tipo (m × n) .
i) Quando m > n
•
Se r ( A) < n , as colunas são linearmente dependentes;
•
Se r ( A) = n , as colunas são linearmente independentes;
•
Como r ( A) < m , as linhas são sempre linearmente dependentes.
ii) Quando m < n
•
Se r ( A) < m , as linhas são linearmente dependentes;
•
Se r ( A) = m , as linhas são linearmente independentes;
•
Como r ( A) < n , as colunas são sempre linearmente dependentes.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
17/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
1 3 0 0 5
Exemplo10: Estude da característica da matriz A = 0 0 1 0 −2 .
0 0 0 1 2
Resolução: A matriz não é quadrada, é uma matriz ( 3 × 5 ), vamos condensá-la na vertical (por
colunas). A maior submatriz triangular (quadrada) que pode figurar em A é de ordem 3 (igual ao nº
de linhas), como se vê todos os elementos da diagonal principal dessa matriz são diferentes de zero
1 3 0 0
5
1 0 3 0
A = 0 0 1 0 −2
0 0 0 1 2
5
1 0 0 0
0 1 0 0 −2
0 0 0 1 2
5
0 1 0 0 −2 ,
0 0 1 3 2
ou seja, r ( A) = 3 (igual ao nº de linhas, as linhas são linearmente independentes, L.I.). Por outro
lado, como se tem sempre r ( A) < 5 (nº de colunas, n = 5 > 3 ), as colunas são sempre linearmente
dependentes (L.D.), mas, sendo r ( A) = 3 , conclui-se que, 3 destas são L.I.. Porquê?
Mesmo sabendo que r ( A) = r ( AT ) , vamos transpor A e calcular a sua característica. Vê-se que, a
maior submatriz triangular que pode figurar em AT é de ordem 3 (nº de colunas), condensado esta
matriz, vê-se que todos os seus elementos principais são diferentes de zero, logo r ( A) = 3 ,
1
0
0
1
0
0
1
0
0
1
0
0
3
0
0
3
0
0
0
1
0
0
1
0
A = 0
1
0
0
1
0
3
0
0
0
0 1
0
0
1
0
0
1
0
0
1
3
0 0
T
5 −2 2
5 −2 2
5 −2 2
.
5 −2 2
A matriz transposta é ( 5 × 3 ), como se tem sempre r ( A) < 5 (nº de linhas) as linhas são sempre
L.D., mas sendo r ( A) = 3 , conclui-se que, 3 destas são L.I.. Quantas colunas são L.I.?
Sugestão: Compare os resultados deste exemplo, com os resultados do exemplo8.
Exercício3: Estude a característica das seguintes matrizes:
1 0 −1 3
a) A = −2 0 1 4 ;
4 0 2 −3
1 2 −1 3
b) B = −2 −4 1 4 ;
4 8 2 −3
1 2 −1 −1
c) C = −2 −4 1 −2 .
4 8 2 8
Sugestão: Veja o que acontece, quanto à dependência, se numa matriz eliminar: a) uma fila com
todos os seus elementos nulos; b) uma fila que seja proporcional a outra; c) uma fila que seja
combinação linear de outras.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
18/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
1.5 Inversão de matrizes
O problema da inversão de matrizes é uma das questões mais importantes da teoria das matrizes.
Para além da definição, nesta secção, vamos apresentar algumas propriedades da inversão e um
método de cálculo da matriz inversa.
Definição9: Chama-se matriz inversa de uma matriz A à matriz B tal que: A × B = B × A = I .
A matriz inversa de A, quando existir, representa-se por: A−1 , pelo que:
A−1 é a inversa de A ⇔ A × A−1 = A−1 × A = I (matriz identidade)
Condições para a existência de matriz inversa
Para que exista o produto A × A−1 é necessário que o número de colunas da matriz A coincida com o
número de linhas da matriz A−1 , por outro lado para que exista o produto A−1 × A é necessário que
o número de colunas da matriz A−1 coincida com o número de linhas da matriz A, ou seja, A e A−1
têm que ter a mesma dimensão. Daí que, só podem ter inversa as matrizes quadradas, e dentro
destas as que têm as filas linearmente independentes, ou seja, característica r igual à sua ordem n.
Em resumo: Uma matriz quadrada A de ordem n admite inversa se r ( A) = n . E, como já vimos,
estas designam-se por matrizes regulares. As matrizes que não têm inversa dizem-se singulares.
Propriedades da matriz inversa. Admitindo que as matrizes admitem inversa e que a sua
dimensão permite que as operações possam ser efectuadas, então são válidas as seguintes regras:
i) A−1 quando existe é única;
( )
ii) A −1
−1
= A;
iii) ( A × B ) = B −1 × A −1 , se existe ( A × B ) , então A e B admitem inversa;
−1
−1
iv) ( A × B ×
× X ) = X −1 ×
−1
× B −1 × A −1 ;
v) A− k = ( Ak ) = ( A−1 ) = A−1 × A−1 × ... × A−1 ;
−1
k
k vezes
vi) A A = A
r
s
r+s
, r, s ∈ ;
vii) ( Ar ) s = Ar s , r , s ∈ ;
viii) (λ A)−1 =
( )
ix) AT
−1
1
λ
A −1 , λ ∈
\ {0} ;
( )
T
= A −1 .
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
19/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Obs.6: Uma matriz ortogonal é a matriz quadrada que tem como inversa a sua transposta, isto é,
A × AT = AT × A = I .
Cálculo da matriz inversa pelo método da matriz ampliada [ A | I ]
Caso exista, a inversa de uma matriz A pode ser calculada transformando a matriz ampliada [ A | I ]
em [ I | B] , onde B = A−1 , ou seja, em [ I | A−1 ] , utilizando as operações elementares, descritas em
1.4, aplicadas apenas às linhas.
Obs.7: A matriz inversa pode ainda ser calcula por definição, o que só é funcional para matrizes de
2ª ou 3ª ordem.
Exemplo11: Determine a inversa da matriz regular A =
1 −1
.
2 0
Resolução: Sendo a matriz regular, ela admite inversa. Vamos considerar a matriz ampliada [ A | I ]
visando obter a matriz [ I | A−1 ] . Num primeiro passo obtemos,
[A | I] =
1 −1 1 0
2
0 0 1
↔
1 −1 1
0
0
2 −2 1
,
considerámos como elemento redutor a11 = 1 , e utilizámos as operações elementares para a
condensação. Finalmente, para obter [ I | A−1 ] , por exemplo, multiplicamos a 2ª linha por (+ 12 ) e,
para o elemento redutor a22 = 1 , reduzimos a zero o elemento a12 = −1 , assim
1 −1 1 0
1 0 0
↔
1
0 1 −1 2
0 1 −1
1
2
1
2
.
O que conclui o processo da matriz ampliada, transformámos a matriz [ A | I ] em [ I | A−1 ] , e,
portanto, a matriz inversa de A, é A−1 =
0
−1
1
2
1
2
.
Por ter inversa, as linhas da matriz A são linearmente independentes e a característica da matriz é 2,
igual à ordem da matriz.
Como a matriz é de 2ª ordem vamos utilizar a definição para calcular a sua inversa. Seja
A−1 =
x
z
y
. Da definição resulta
t
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
20/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
A × A −1 = I ⇔
1 −1
x
×
2 0
z
y
1 0
x−z
=
⇔
t
0 1
2x
Matrizes
y−t
1 0
=
,
2y
0 1
para se verificar esta última igualdade devemos ter
x − z =1
y−t = 0
2x = 0
2y = 1
x=0
⇔
y=
1
2
−1
z = −1
t=
, donde A =
x
z
0
=
−1
t
y
1
2
1
2
.
1
2
Repare-se que A−1 × A = I , e que a inversa de uma matriz quadrada A é ainda uma matriz quadrada
da mesma ordem.
Obs.8: A matriz de dimensão (2 × 2) , A =
dada por A−1 =
a b
admite inversa se ad − bc ≠ 0 , a sua inversa é
c d
d −b
1
.
ad − bc −c a
Exercício4: Verifique este resultado para o exemplo anterior.
−1
2 −3
1
1 .
Exemplo12: Verifique a existência da inversa da matriz C = 0
2 −3
7
Resolução: Vamos utilizar o método da matriz ampliada. É possível pensar na inversa desta matriz,
uma vez que, ela é de ordem 3, ou seja, quadrada. A matriz ampliada é
−1
[C | I ] =
2 −3 1 0 0
0
1
2 −3
10 1 0 .
7 0 0 1
Utilizando as operações elementares, obtemos
−1
2 −3 1 0 0
0
1
2 −3
1 −2 3 −1 0 0
1 −2 3 −1 0 0
10 1 0 ↔ 0
1 1 0 1 0 ↔ 0
70 0 1
2 −3 7 0 0 1
0
1 −2 3 −1
1 1 0 1 0 ↔ 0
1 1 2 0 1
0
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
0 0
1 1 0 1 0 .
0 0 2 −1 1
21/ 22
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL
Matrizes
Portanto, partindo de [C | I ] não é possível obter [ I | C −1 ] , na última matriz ampliada há uma linha
de zeros. Quer dizer, a matriz C não tem inversa. As linhas da matriz não são linearmente
independentes, a sua característica é 2, diferente da ordem da matriz que é 3.
Exemplo13: Sendo A uma matriz quadrada regular que verifica a relação A2 + A + I = 0 , determine
a sua inversa A−1 .
Resolução: Multiplicando à esquerda A2 + A + I = 0 por A−1 , vem
A−1 A2 + A−1 A + A−1 I = 0 ⇔ ( A−1 A) A + I + A−1 = 0 ⇔
⇔ A + I + A−1 = 0 ⇔ A−1 = − A − I ⇔ A−1 = −( A + I )
.
Exemplo14: Supondo A e B matrizes regulares, resolva em ordem a X a equação matricial
( AT ) −1 X
T
+ ( AB )−1 = A .
Resolução: Multiplicando à esquerda A2 + A + I = 0 por A−1 , vem
( AT )−1 X
T
+ ( AB) −1 = A ⇔ X T ( AT ) −1
T
= A − ( AB )−1 ⇔ X T ( A−1 )T
T
= A − ( AB)−1 ⇔
⇔ X T A−1 = A − ( AB )−1 ⇔ X T A−1 A = AA − ( AB) −1 A ⇔
−1
−1
−1
.
⇔ X = A − ( AB) A ⇔ X = A − B A A ⇔ X = A − B
T
2
T
2
T
2
−1
1 0 0
1 0 0
Considerando, agora A = 1 1 0 e B = 0 2 0 , vamos determinar a matriz X,
0 0 1
0 0 3
X T = A 2 − B −1
1 0 0
= 1 1 0
0 0 1
2
1 0 0
− 0 2 0
0 0 3
−1
=
1 0 0
1 0 0
0 0 0
0 0 0
1
1
= 2 1 0 − 0 2 0 = 2 2 0 ⇔ X = 2 12 0
0 0 1
0 0 13
0 0 23
0 0 23
T
0 2 0
= 0 12 0
0 0 23
.
Ou (verifique)
X T = A2 − B −1 ⇔ ( X T )T = ( A2 − B −1 )T ⇔ X = ( A2 )T − ( B −1 )T ⇔ X = ( AT ) 2 − ( BT )−1 .
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
22/ 22
Download