Verificar conclusão Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Laboratório de Materiais Elétricos – EEL 7051 Professor Clóvis Antônio Petry __________________________________________________________________ Experiência 01 Levantamento da Curva de Magnetização de Indutores Fábio P. Bauer Tiago Natan A Veiga Florianópolis, junho de 2006. 2 Sumário 1. Objetivos....................................................................................................................... 3 2. Introdução..................................................................................................................... 4 3. Magnetização de um Material ...................................................................................... 5 4. Ensaio do Laboratório .................................................................................................. 6 4.1 Materiais e Métodos ............................................................................................... 6 4.2 Indutor de Ferro Silício .......................................................................................... 7 4.3 Indutor de Ferrite .................................................................................................... 9 4.4 Análise das Duas Curvas Simultaneamente ......................................................... 11 5. Conclusões.................................................................................................................. 13 6. Referências Bibliográficas.......................................................................................... 14 3 1. Objetivos ► Levantar a curva de magnetização de dois núcleos indutivos, a saber, de ferro-silício e de ferrite. ► Comparar os gráficos obtidos e explicar o comportamento de cada núcleo do ponto de vista magnético. ► Explorar o conceito de saturação e interpretá-lo a partir das propriedades dos matérias dos indutores. 4 2. Introdução Os materiais magnéticos podem ser agrupados em duas categorias: ►Materiais doces ou moles: também conhecidos por serem “passivos” à presença de campo magnético (H). Nesses materiais, uma vez que o H neles aplicado é cessado, não guardam nenhuma indução (N) remanescente e variando-se H em módulo e direção, o mesmo acontecerá com B. ►Materiais duros: aqueles que contrariamente aos anteriores, guardam uma quantia significativa de indução remanescente uma vez que o campo magnético externo é extinto. Esses materiais também são conhecidos como “ímãs permanentes”. Para os materiais duros são feitos experimentos que permitem obter relações entre H e B. Sabe-se, a partir de ensaios com circuitos magnéticos, que o campo H criado no ímã é proporcional à corrente I que operante no circuito e que B é proporcional ao fluxo mensurável e, portanto, é proporcional à tensão V entre os terminais do circuito. Nesse ensaio serão obtidas curvas de magnetização para um indutor com núcleo de ferro-silício – tipicamente usado em aplicações de baixas freqüências - e para um com núcleo de ferrite – mais comum em altas freqüências. As propriedades das curvas BH serão representadas por curvas VI e o comportamento dos indutores será monitorado do ponto de vista magnético. 5 3. Magnetização de um Material A curva BH ou curva de imantação e descreve o ciclo de histerese nos materiais moles. Ela está distribuída nos quatro quadrantes (conforme fig.3.1) e é muito rica em conceitos. Um deles diz respeito as campo Hc, obtido na ausência de fluxo no circuito magnético (B=0). Hc é conhecido como “campo coercitivo”. Br Hc Fig. 3.1 Esboço de uma curva BH genérica Fonte: “http://efisica.if.usp.br/eletricidade/basico/cap13/cap13_18.php” Diminuindo-se H até zero obtemos a característica intrínseca dos meios duros, pois estes guardam uma imantação remanescente muito expressiva, indicada por Br, na figura 3.1. Nesse instante, onde I = 0, há um fluxo circulando no circuito magnético devido ao campo Br do ímã. À medida que aumentamos Ho, nos aproximamos da região de saturação do material, na qual a curva BH se assemelha a uma reta não paralela ao eixo do Ho. De acordo com a teoria dos domínios de Weiss, fig.3.2, uma vez cessado o H nos materiais, os campos dos domínios tenderão a se manter na mesma situação de alinhamento. A indução remanescente do material pode ser entendida pela ação conjunta dos domínios de Weiss, conforme esclarecido em [2]. 6 Fig. 3.2 Domínios de Weiss sendo alinhados pela presença de um campo externo Fonte: BASTOS, J.P.A.: ”Eletromagnetismo para Engenharia: Estática e Quase-Estática” O ensaio no Laboratório explora os conceitos vistos acima para dois indutores. Um de ferro-silício e outro de ferrite. O circuito é submetido a uma tensão alternada, respondendo com uma corrente da mesma natureza que gera um fluxo magnético no interior dos indutores. 4. Ensaio do Laboratório 4.1 Materiais e Métodos ► 1 Osciloscópio Digital TEKTRONIX, modelo TDS 3012B, 10MHz, 1.25GS/s; ► 8 resistores de potência de (50Ω +- 10%), 30 W em paralelo; ► Um indutor com núcleo de ferro silício (lâmina EI de 2,2 cm por 2,2 cm); ► Um indutor com núcleo de ferrite (lâmina EE do fabricante Thornton, [4] ); ► Um varivolt. Para cada um dos indutores varia-se a tensão, com início em zero volts, ajustando o varivolt, de modo que a corrente seja lida a cada 0,5 A. Os sinais senoidais que representam a corrente e a tensão no circuito são capturados no osciloscópio a cada leitura, bem como o varivolt é descarregado a cada leitura. Somente pra as correntes de 1 A e 6 A os sinais foram salvos e mostrados no desenvolvimento do relatório. A figura 4.1.1 mostra o circuito utilizado nos ensaios: 7 Fig. 3.2 Circuito a ser montado para levantar a curva de magnetização Fonte: PETRY, C.A.”Experiência 01- Materiais Elétricos” 4.2 Indutor de Ferro Silício A Tabela 4.2.1 resume os dados obtidos para o núcleo indutivo de ferrosilício. Ferro Silício Corrente desejada Tensão [V] Corrente Medida [A] 0,0 0,372 0,120 0,5 1,72 0,508 1,0 3,35 0,967 1,5 5,47 1,57 2,0 6,71 1,95 2,5 8,73 2,54 3,0 10,3 3,03 3,5 11,9 3,52 4,0 13,2 3,96 4,5 14,8 4,51 5,0 16,2 5,11 5,5 17,1 5,52 6,0 18,0 6,02 Tabela 4.2.1. Dados obtidos para o núcleo de ferro-silício 8 A figura 4.2.1 mostra a curva de magnetização obtida com os dados da Tabela 4.2.1: Figura 4.2.1- Curva para o núcleo de ferro silício Abaixo seguem os gráfico de tensão e corrente obtidos para i ≈ 1,0 A e i ≈ 6,0 A. Figura 4.2.2- Primeira captura de corrente e tensão para o Núcleo de Ferro Silício 9 Figura 4.2.3- Segunda captura de corrente e tensão para o Núcleo de Ferro Silício 4.3 Indutor de Ferrite As medições obtidas para o indutor com núcleo de ferrite são apresentadas na Tabela 4.3.1: Ferro Silício Corrente Desejada Tensão [V] Corrente Medida [A] 0,0 0,00 0,000 0,5 2,31 0,454 1,0 4,74 0,959 1,5 7,27 1,47 2,0 10,4 2,10 2,5 12,6 2,54 3,0 14,8 2,99 3,5 17,3 3,51 4,0 19,2 4,00 4,5 20,8 4,52 5,0 21,9 4,94 10 5,5 23,3 5,58 6,0 24,1 5,98 Tabela 4.2.1. Dados obtidos para o núcleo de ferrite Analogamente ao caso anterior, os dados são plotados e a figura 4.3.1 mostra a curva obtida. Figura 4.3.1- Curva de Magnetização para o núcleo de ferrite Também são mostrados os gráficos de tensão e corrente para i ≈ 1,0A e i ≈ 6,0 A. Figura 4.2.2- Primeira captura de corrente e tensão para o Núcleo de Ferrite 11 Figura 4.2.3- Segunda captura de corrente e tensão para o Núcleo de Ferrite 4.4 Análise das Duas Curvas Simultaneamente A figura 4.4.1 mostra ambas as curvas construídas no mesmo gráfico: Figura 4.4.1- Gráfico com ambas as curvas de magnetização Comparando os gráficos, percebe-se que as curvas diferem quanto ao seu formato. A ferrite é um material magnético classificado como mole ou doce. 12 É também isolante. A sua permeabilidade relativa a 200C é 1,04~1.2. Por essas propriedades, pode-se entender por que a sua região “aproximadamente linear” no gráfico é mais expressiva do que a do ferro-sílicio, que é um material duro (ímã permanente) com permeabilidade relativa de 7000. Sabe-se que a indutância pode ser expressa como: L(t ) (t ) , onde i (t ) (t ) é o fluxo magnético no indutor e i(t) a corrente que o atravessa. Como B(t) e H(t) são proporcionais a (t ) e i(t) respectivamente, a indutância pode ser vista como proporcional ao coeficiente de inclinação da região linear de cada curva. Essa é a região de operação para cada indutor. O gráfico da figura 4.4.1 também deixa claro que a região de saturação para o núcleo de ferrite é alcançada para valores de H muito superiores em relação ao núcleo de ferro-silício. 13 5. Conclusões O desenvolvimento do ensaio para levantamento da curva de magnetização mostrou-se relevante para melhor compreender a natureza dos diferentes matérias que podem compor um núcleo indutivo. Os ímãs de ferrite surgiram em 1947 e sua utilização foi muito promovida por possuírem um elevado valor de campo coercitivo embora tenham uma baixa indução remanescente. Suas aplicações podem desde automotivas a eletrodomésticas. Por tratar-se de um material isolante, a ferrite expande ainda mais o seu leque de utilidades, pois não existirão correntes parasitas nela circulando. Já o núcleo de ferro-silício apresentou melhores condições para a região de operação do indutor, uma vez que a sua região de saturação é alcançada para valores mais elevados de H em comparação com o outro núcleo. Como conseqüência direta, é muito provável que o ferro-silício possua mais perdas por histerese. Todavia, como ele é um material mole, não guarda indução remanescente tornando-se muito útil em aplicações como na composição dos guindastes das plataformas que lidam com carregamento de containeres. Muitas pesquisas estão sendo desenvolvidas com intuito de encontrar combinações ideais de materiais na composição de ligas que atendam à demanda incessante por qualidade. 14 6. Referências Bibliográficas [1] PETRY, C.A.: “Experiência 01 - Levantamento da curva de Magnetização de Indutores”. Guia de Aula. [2] BASTOS, J.P.A.: ”Eletromagnetismo para Engenharia: Estática e Quase-Estática”. Editora da UFSC. Florianópolis, 2004. [3] E-livro.:”Magnetismo - O Campo Magnético”. Disponível em :<http://efisica.if.usp.br/eletricidade/basico/cap13/cap13_18.php>. Acesso em 05 jun. 2004. [4] THORNTON: “Thornton Eletrônica”. Disponível em: <http://www.thornton.com.br/index.html.>. Aceso em 05. jun 2006