matemática elementar

Propaganda
E-books
PCNA
Vol. 1
MATEMÁTICA
ELEMENTAR
CAPÍTULO 4 – GEOMETRIA PLANA E
ESPACIAL
1
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
SUMÁRIO
Apresentação ------------------------------------------------- 3
Capítulo 4 ------------------------------------------------------4
Geometria Plana e Espacial -------------------------------4
4.1. Ponto----------------------------------------------------4
4.2. Reta ----------------------------------------------------- 5
4.2.1 Postulados da Reta ----------------------------------- 5
4.3. Plano ---------------------------------------------------6
4.3.1 Postulados do Plano --------------------------------- 7
4.3.2. Posições Relativas de duas Retas no Plano ------ 9
4.4. Espaço------------------------------------------------ 10
4.4.1 Posições Relativas de duas Retas no Espaço ----- 11
4.5. Segmento de Retas -------------------------------- 12
4.5.1. Razão entre Segmentos de Reta ------------------ 13
4.5.2. Segmentos Proporcionais ------------------------- 14
4.5.3. Teorema de Talles ---------------------------------- 18
4.6. Circunferência e Círculo ------------------------ 20
4.6.1. Elementos da Circunferência e do Círculo ----- 22
4.6.1.1. Corda e Segmento Circular (Figura. 4.23).22
4.6.1.2. Arco e Setor Circular (Figura. 4.24). ------ 22
4.6.1.3. Diâmetro, Semicircunferência e Semicírculo
----------------------------------------------------------- 23
4.7. Ângulo ------------------------------------------------ 24
4.7.1. Unidades de Medida de Ângulos----------------- 24
4.7.1.1. Grau ------------------------------------------ 24
4.7.1.2. Radiano -------------------------------------- 25
4.8.
Conversão de unidades ------------------------ 26
Página | 1
2
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
4.9.
4.9.1.
Classificação dos Ângulos -------------------- 29
Em relação a outro ângulo ----------------- 30
4.9.2. Em relação à posição de ângulos
formados por duas retas paralelas cortadas por
uma reta transversal (Figura. 4.31). --------------- 31
4.10. Polígono -------------------------------------------- 34
4.10.1. Classificação quanto ao número de lados. ---- 34
4.11. Semelhança de Polígonos ---------------------- 36
4.12. Semelhança de Triângulos -------------------- 39
4.13. Perímetro e Área --------------------------------- 42
4.13.1. Quadrado ------------------------------------------ 44
4.13.2. Círculo --------------------------------------------- 45
4.13.3. Paralelogramo ------------------------------------ 46
4.13.4. Triângulo ------------------------------------------ 46
4.13.5. Losango --------------------------------------------47
4.13.6. Trapézio ------------------------------------------- 48
4.13.7. Polígono Regular de 𝐧 lados -------------------- 49
4.14. Volume --------------------------------------------- 52
4.14.1. Cubo ----------------------------------------------- 54
4.14.2. Paralelepípedo-------------------------------------55
4.13.3. Prisma ----------------------------------------------55
4.14.4. Cilindro-------------------------------------------- 56
4.14.5. Pirâmide ------------------------------------------ 56
4.15.6. Cone ------------------------------------------------ 57
4.15.7. Tronco de Cone ----------------------------------- 58
4.15.8. Esfera ---------------------------------------------- 60
LISTA DE EXERCÍCIOS ---------------------------------- 63
GABARITO -------------------------------------------------- 73
Página | 2
3
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Apresentação
Ao chegar à UFPA, você tem a possibilidade de
cursar gratuitamente cursos de nivelamento em Ciências
Básicas (Física, Química e Matemática). Assistindo às aulas
no próprio ambiente em que cursará sua graduação, isso
auxiliará você a adquirir o conhecimento necessário para
enfrentar melhor o programa curricular do seu curso.
Então seja Bem-vindo ao Curso de Nivelamento em
Matemática Elementar do PCNA. Este é o quarto de uma
série de cinco E-books que vão lhe acompanhar durante
o curso, o professor utilizará este material como apoio às
suas aulas e é fundamental que você o leia e acompanhe as
atividades propostas.
A série “E-books PCNA-Matemática” foi desenvolvida
com o propósito de apresentar o conteúdo do curso de
Matemática Elementar, fornecendo também ferramentas
para facilitar o ensino e a aprendizagem do Cálculo
Diferencial e Integral que você irá encontrar em breve na sua
graduação.
Neste fascículo você irá encontrar o conteúdo de
Geometria Plana e Espacial. É bom lembrar que não se
pode aprender Cálculo sem alguns pré-requisitos, que
muitas das vezes não valorizamos por acharmos simples e
descomplicados, todavia, atenção e compreensão se fazem
necessária.
Página | 3
4
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Capítulo 4
Geometria Plana e Espacial
A geometria plana euclidiana é a parte da matemática
que estuda as figuras que não possuem volume. Já a geometria
espacial euclidiana, por sua vez, estuda os objetos que possuem
mais de duas dimensões e ocupam lugar no espaço, ou seja,
possuem volume e são conhecidos como sólidos geométricos
ou figuras geométricas espaciais.
A seguir se definirá os entes geométricos, cujas
propriedades serão estudadas ao longo do capítulo, entretanto é
necessário enfatizar que não existe na geometria em geral uma
noção para essas figuras primitivas (ponto, reta e plano), sendo
assim, eles serão conceituados intuitivamente, baseado na
experiência e observação do ponto de vista dimensional.
4.1. Ponto
O ponto determina uma localização e seu conceito é
adimensional e não possui forma ou tamanho, embora seja
necessário fazê-los, para a sua representação gráfica (Figura. 4.1).
Usa-se letras maiúscula latinas para denotar pontos (A, B, C,...).
Figura 4.1 – Representação gráfica de um ponto.
Página | 4
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
5
4.2. Reta
A reta é uma linha unidimensional ilimitada. Mesmo que
seja necessário dar uma espessura e um tamanho para a
representação gráfica de uma reta, ela não tem espessura e seu
comprimento é infinito, como exemplificado na Figura. 4.2. Em
sua notação usa-se letras minúsculas latinas (a, b, c, ...).
Figura 4.2 – Representação dos tipos de reta.
4.2.1 Postulados da Reta
• Numa reta, bem como fora dela, existem infinitos pontos.
A Figura. 4.3 define uma representação gráfica deste
postulado.
Figura 4.3 – Pontos inclusos e exclusos à reta.
•
Por um ponto passam infinitas retas (Figura. 4.4).
Página | 5
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
6
Figura 4.4 – Representação de retas em um ponto.
•
Dois pontos distintos determinam uma única reta que os
contém (Figura. 4.5).
Figura 4.5 – Reta formada pela união de dois pontos.
4.3. Plano
O plano corresponde a uma superfície plana bidimensional
ilimitada.
Embora seja necessário dar uma forma e tamanho para a sua
representação gráfica, o plano tem comprimento e largura
Página | 6
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
7
infinitos e não tem profundidade, como exemplificado na Figura.
4.6. Para a representação com letras são utilizadas letras gregas
minúsculas (𝛼, 𝛽, 𝛾, … ).
Figura 4.6 – Representação de um plano.
4.3.1 Postulados do Plano
•
Num plano, bem como fora dele, existem infinitos pontos. A
Figura. 4.7 define uma representação gráfica deste postulado.
Figura 4.7 – Representação de pontos inclusos e exclusos ao plano 𝛽.
•
Toda reta que tem dois pontos distintos num plano fica
inteiramente contida nesse plano (Figura. 4.8).
Página | 7
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
8
Figura 4.8 – Reta formada pela união de dois pontos contida em um
plano.
•
Três pontos não situados na mesma reta determinam um plano
(Figura. 4.9).
Figura 4.9 – Pontos determinantes de um plano α qualquer.
•
Por uma reta passam infinitos planos (Figura. 4.10).
Página | 8
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
9
Figura 4.10 – Reta com infinitos planos.
4.3.2. Posições Relativas de duas Retas no Plano
Duas retas em um mesmo plano podem ser:
•
Retas Concorrentes: Duas retas são ditas concorrentes
quando existe apenas um ponto comum entre elas, ou seja,
quando as retas se interceptam.
•
Retas Paralelas Distintas: Duas retas 𝑎 e 𝑏, em um mesmo
plano, são ditas paralelas distintas quando não têm ponto
comum entre elas. Denota-se 𝑎/ /𝑏.
•
Retas Paralelas Coincidentes: Duas retas são ditas
paralelas coincidentes quando têm todos os pontos em
comum.
A Figura. 4.11 esboça posições de duas retas concorrentes,
paralelas e coincidentes em um mesmo plano.
Página | 9
10
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.11 – Posições relativas de retas em um plano.
4.4. Espaço
O espaço tridimensional é o conjunto de todos os pontos
situados em um plano e fora dele.
Embora seja necessário dar uma forma para a sua
representação gráfica do plano, ele tem comprimento, largura e
profundidade infinitos, como exemplificado na Figura. 4.12.
Figura 4.12 – Representação de espaço
Página | 10
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
11
4.4.1 Posições Relativas de duas Retas no Espaço
Duas retas no espaço tridimensional podem ser:
•
Retas Coplanares: Duas retas são ditas coplanares quando
existe um plano que as contêm.
•
Retas Reversas: Duas retas são ditas reversas quando não
existe um plano que as contêm.
A Figura. 4.13 aponta retas coplanares e retas reversas.
Figura 4.13 – Posições relativas de retas em um espaço.
De acordo com a Figura acima, pode-se afirmar que:
•
As retas 𝑟 e 𝑠 estão contidas no plano ABFE, portanto são
coplanares.
•
As retas 𝑡 e 𝑠 estão contidas no plano EFGH, portanto são
coplanares.
•
As retas 𝑡 e 𝑟 são retas reversas, pois não existe um plano que
as contêm.
Página | 11
12
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Exemplo 4.1.: De acordo com a Figura 4.14 abaixo, dê a
classificação em relação à posição relativa dos pares de retas
indicadas:
Figura 4.14 – Figura referente ao Exemplo 4.1.
a) Retas r e s: coplanares paralelas
b) Retas r e t: coplanares concorrentes
c) Retas r e x: reversas
d) Retas t e x: coplanares paralelas
4.5. Segmento de Retas
Segmento de reta é o conjunto de todos os pontos de uma reta
que estão limitados por dois pontos, denominados extremidades,
como é exemplificado na Figura 4.15.
Página | 12
13
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.15 – Representação de um segmento de reta
𝐴𝐵 = medida do comprimento de ̅̅̅̅
𝐴𝐵
4.5.1. Razão entre Segmentos de Reta
O conceito de razão é a forma mais comum e prática de
fazer a comparação relativa entre duas grandezas.
(4.1).
A razão entre dois números 𝑥 e 𝑦 é definida pela Equação
𝑥
𝑦
=𝑘
(4.1)
𝑐𝑜𝑚 𝑘 ∈ ℜ 𝑒 𝑦 ≠ 0,
A razão 𝑘 indica o valor do número 𝑥 quando comparado
ao número 𝑦, tomando-o como unidade. Por exemplo, a razão
entre dois números reais 𝑥 = 2 e 𝑦 = 4 é determinada por (I).
𝑥
𝑦
2
1
4
2
= = = 0,5
(I)
Isto significa que o número 𝑥 é 0,5 vezes o número 𝑦, ou
seja, 𝑥 é a metade de 𝑦.
Página | 13
14
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Não é possível dividir um segmento de reta por outro para
determinar a razão entre segmentos, mas é possível realizar a
divisão entre as medidas (tamanho) dos segmentos. Por exemplo,
a razão os entre os segmentos ̅̅̅̅
𝐴𝐵 e ̅̅̅̅
𝐶𝐷 , respectivamente, de
comprimentos 6 cm e 3 cm é determinada por (II).
̅̅̅̅
𝐴𝐵
̅̅̅̅
𝐶𝐷
6
= =2
3
(II)
Isto significa que o segmento ̅̅̅̅
𝐴𝐵 é 2 vezes maior do que o
̅̅̅̅.
segmento 𝐶𝐷
4.5.2. Segmentos Proporcionais
Proporção é a igualdade entre duas razões equivalentes.
Quatro números 𝑥, 𝑦, 𝑎 e 𝑏 são proporcionais, nesta
ordem, se a razão entre os dois primeiros for igual à razão entre os
dois últimos, ou seja:
𝑥
𝑦
=
𝑎
𝑏
=𝐶
(4.2)
𝑦 ≠ 0; 𝑏 ≠ 0
O número real 𝐶 é chamado de constante de
proporcionalidade. Lê-se 𝑥 está para 𝑦 assim como 𝑎 está para 𝑏.
Por exemplo, se os números 𝑥 e 𝑦 são proporcionais a 2 e 3, nesta
ordem, então a razão entre x e y é igual a (I).
𝑥
𝑦
=
2
3
(I)
onde 2/3 é a constante de proporcionalidade.
Observe que apenas a informação da constante de
proporcionalidade não define exatamente os valores de 𝑥 e 𝑦, pois
Página | 14
15
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
existem infinitas soluções para 𝑥 e 𝑦. Por exemplo, 𝑥 = 4 e 𝑦 =
6; 𝑥 = 6 e 𝑦 = 9.
𝑥
𝑦
4
6
2
6
9
3
= = =⋯=
(II)
De forma semelhante aos números reais, é possível
estabelecer a proporcionalidade entre segmentos de reta
igualando as razões que são equivalentes.
̅̅̅̅, 𝐶𝐷
̅̅̅̅ , ̅̅̅̅
̅̅̅̅ são, nesta ordem,
Os segmentos 𝐴𝐵
𝐸𝐹 e 𝐺𝐻
proporcionais quando a razão entre os dois primeiros for igual à
razão entre os dois últimos, ou seja, seguem a razão (III):
𝐴𝐵
𝐶𝐷
=
𝐸𝐹
𝐺𝐻
(III)
onde: 𝐴𝐵 é a medida do segmento ̅̅̅̅
𝐴𝐵 , 𝐶𝐷 é a medida do segmento
̅̅̅̅ , 𝐸𝐹 é a medida do segmento 𝐸𝐹
̅̅̅̅ , 𝐺𝐻 é a medida do segmento
𝐶𝐷
̅̅̅̅
𝐺𝐻 .
̅̅̅̅, 𝐶𝐷
̅̅̅̅ , ̅̅̅̅̅
̅̅̅̅ , nesta
Exemplo 4.2: Verifique se os segmentos 𝐴𝐵
𝑀𝑁 e 𝑃𝑄
ordem, são proporcionais, sabendo que 𝐴𝐵 = 6 𝑐𝑚, 𝐶𝐷 = 18 𝑐𝑚,
𝑀𝑁 = 4 𝑐𝑚 e 𝑃𝑄 = 12 𝑐𝑚.
Solução:
Para verificar, teremos que as razões entre ̅̅̅̅
𝐴𝐵 / ̅̅̅̅
𝐶𝐷 e ̅̅̅̅̅
𝑀𝑁/
̅̅̅̅ são iguais a (I) e (II), respectivamente.
𝑃𝑄
̅̅̅̅
𝐴𝐵
̅̅̅̅
𝐶𝐷
=
6
18
=
1
3
(I)
Página | 15
16
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
̅̅̅̅̅
𝑀𝑁
̅̅̅̅
𝑃𝑄
=
4
12
=
1
(II)
3
Como
𝐴𝐵 𝑀𝑁 1
=
=
𝐶𝐷 𝑃𝑄 3
podemos afirmar que os segmentos são proporcionais e a
constante de proporcionalidade é de 1/3.
̅̅̅̅, 𝐶𝐷
̅̅̅̅ , ̅̅̅̅̅
̅̅̅̅ ,
Exemplo 4.3: Considere os segmentos 𝐴𝐵
𝑀𝑁 e 𝑃𝑄
̅̅̅̅
proporcionais nesta ordem. Calcule as medidas dos segmentos 𝐴𝐵
̅̅̅̅
e 𝐶𝐷 sabendo que 𝐴𝐵 = (𝑥 + 3) 𝑐𝑚, 𝐶𝐷 = (𝑥 − 2) 𝑐𝑚, 𝑀𝑁 = 40 𝑐𝑚
e 𝑃𝑄 = 30 𝑐𝑚.
Solução:
A equação (I) referencia a proporcionalidade entre os
quatro seguimentos e substituindo os respectivos valores nesta,
será possível calcular o valor de x.
𝐴𝐵
𝐶𝐷
=
𝑀𝑁
𝑃𝑄
𝑥+3
𝑥−2
=
40
30
𝑥+3 4
=
→
𝑥−2 3
(I)
3 (𝑥 + 3) = 4 (𝑥 − 2)
3𝑥 + 9 = 4𝑥 − 8
9 + 8 = 4𝑥 − 3𝑥 ∴ 𝑥 = 17
Dessa forma, os seguimentos
respectivamente, (II) e (III).
𝐴𝐵
e
𝐶𝐷
serão,
Página | 16
17
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝐴𝐵 = (𝑥 + 3) = 17 + 3 = 20 𝑐𝑚
𝐶𝐷 = (𝑥 − 2) = 17 − 2 = 15 𝑐𝑚
(III)
(II)
̅̅̅̅ seja
Exemplo 4.4: Suponha que um segmento de reta 𝐴𝐵
dividido pelo ponto 𝑃 numa razão de 2/3, conforme Figura 4.16.
Calcule os comprimentos dos segmentos ̅̅̅̅
𝐴𝑃 e ̅̅̅̅
𝑃𝐵 sabendo
̅̅̅̅
que o comprimento de 𝐴𝐵 é 20 𝑐𝑚.
Figura 4.16 – Figura referente ao Exemplo 4.4.
Solução:
De acordo com a Figura 4.16, os seguimentos 𝐴𝑃, 𝑃𝐵 e 𝐴𝐵
são iguais a (I), (II) e (III), respectivamente.
𝑥 = 𝐴𝑃
(I)
𝑥 + 𝑦 = 20
(II)
𝑥
𝑦
=
2
3
(III)
Isolando 𝑦 na equação (II), este será igual à (IV).
y= 20 − 𝑥
(II)
Substituindo y na equação (III), é possível obter o valor de
x.
Página | 17
18
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝑥
2
=
→ 3 𝑥 = 2 (20 − 𝑥)
20 − 𝑥 3
3𝑥 = 40 − 2𝑥 → 5𝑥 = 40 → 𝑥 = 8
Substituindo o valor de 𝑥 na equação (II), y será
igual a 12.
𝑦 = 20 − 𝑥 → 𝑦 = 20 − 8 → 𝑦 = 12
Logo,
𝐴𝑃 = 8 𝑐𝑚 ; 𝑃𝐵 = 12 𝑐𝑚
4.5.3. Teorema de Talles
“Um feixe de retas paralelas determina, em duas retas
transversais, segmentos que são proporcionais”.
Um feixe de retas paralelas é o conjunto de três ou mais
retas coplanares paralelas. Uma reta neste mesmo plano que corta
o feixe é chamada de reta transversal.
O teorema de Talles encontra-se ilustrado na Figura 4.17.
Figura 4.17 – Representação de um feixe de retas paralelas
𝑠𝑒 𝑟//𝑠//𝑡 𝑒𝑛𝑡ã𝑜
𝐴𝐵 𝑀𝑁
=
𝐵𝐶 𝑁𝑃
Exemplo 4.5: Determine o valor de 𝑥 na Figura 4.18.
Página | 18
19
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.18 – Figura referente ao Exemplo 4.5..
Solução:
De acordo com o teorema de Talles, a igualdade (I)
prevalece.
11
7
𝑥
(I)
=8
Sendo possível inferior que o valor de x é igual a (II)
11∙8
88
𝑥= 7 → 𝑥= 7
(II)
Exemplo 4.6: A Figura 4.19 mostra dois terrenos cujas
laterais horizontais são paralelas. Determine as medidas 𝑥 e 𝑦.
Página | 19
20
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.19 – Figura referente ao Exemplo 4.6.
Solução:
De acordo com o teorema de Talles, tem-se a equação (I):
𝑥
𝑦
20
(I)
= 50
Isolando x, obteremos a equação (II).
2
(II)
𝑥 = 5 .𝑦
Sendo que a soma de x e y a equação (III) e substituindo
(II) nesta, é possível calcular o valor de y.
𝑥 + 𝑦 = 63
(III)
2𝑦
2𝑦 + 5𝑦
+ 𝑦 = 63 →
= 63
5
5
315
7𝑦 = 315 → 𝑦 =
= 45
7
𝑦 = 45 𝑚
Dessa maneira, substituímos o valor de y na equação (III)
para obter o valor de x.
𝑥=
2𝑦
5
=
2.45
5
= 18 m
As medidas são: 𝑥 = 18 𝑚 𝑒 𝑦 = 45 𝑚
4.6. Circunferência e Círculo
A circunferência é o conjunto dos pontos de um plano que
estão a uma mesma distância (denominada raio) de um ponto fixo
situado no mesmo plano (chamado centro). A Figura. 4.20 aponta
uma representação esquemática de uma circunferência.
Página | 20
21
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.20 – Representação de uma circunferência
O interior da circunferência é o conjunto de pontos que
estão a uma distância menor do que 𝑟 do centro 𝑂.
O exterior da circunferência é o conjunto de pontos que
estão a uma distância maior do que do que 𝑟 do centro 𝑂, conforme
a Figura. 4.21.
Figura 4.21 – Representação de um círculo.
O círculo ou disco é a superfície plana e fechada, limitada
pela circunferência, ou seja, é o conjunto de pontos situados na
circunferência e em seu interior. A Figura. 4.22 compara círculo e
circunferência.
Página | 21
22
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.22 – Comparação entre círculo e circunferência
4.6.1. Elementos da Circunferência e do Círculo
4.6.1.1.
Corda e Segmento Circular (Figura.
4.23).
Corda é um segmento de reta que liga dois pontos de uma
circunferência.
Segmento circular é a interseção de um círculo com o
semipleno definido por uma corda que não contém o centro do
círculo.
Figura 4.23 – Representação de corda e segmento circular
4.6.1.2.
Arco e Setor Circular (Figura. 4.24).
Página | 22
23
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.24 – Representação de arco e setor circular
̌ de uma circunferência é o conjunto de pontos
O arco 𝐴𝐵
desta circunferência compreendidos pelos raios ̅̅̅̅
𝐴𝑂 e ̅̅̅̅
𝑂𝐵 .
̌ é o conjunto de pontos do círculo que
O setor circular 𝐴𝑂𝐵
estão compreendidos pelos raios ̅̅̅̅
𝐴𝑂 e ̅̅̅̅
𝑂𝐵.
4.6.1.3.
Diâmetro,
Semicircunferência
Semicírculo (Figura. 4.25).
e
Figura 4.25 – Representação de diâmetro, semicircunferência e
semicírculo.
Página | 23
24
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
O diâmetro é uma corda que passa pelo centro da
circunferência. É a corda de comprimento máximo e mede o dobro
do raio.
̆ é o arco definido pelos pontos 𝐴 e
A semicircunferência 𝐴𝐵
𝐵 diametralmente opostos da circunferência.
̌ é o setor circular definido pelos raios
O semicírculo 𝐴𝑂𝐵
̅̅̅̅ e 𝑂𝐵
̅̅̅̅.
𝑂𝐴
4.7. Ângulo
Ângulo é a região plana limitada por duas semirretas de
mesma origem. A Fig. 4.26 aborda uma ilustração esquemática de
um ângulo qualquer.
Figura 4.26 – Representação de ângulo
4.7.1. Unidades de Medida de Ângulos
Duas unidades de medida de um arco e, consequentemente, de
um ângulo são normalmente utilizadas: o grau e o radiano.
4.7.1.1. Grau
Se uma circunferência for dividida em 360 arcos iguais, o
ângulo que determina um destes arcos corresponde a 1 grau (1∘ ),
ou seja, o arco da circunferência mede um grau quando
corresponde a 1/360 dessa circunferência.
Página | 24
25
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Um grau tem 60 minutos (60′). Um minuto tem 60
segundos (60′′).
A medida do ângulo de uma volta completa ou giro é de
360 . A Figura. 4.27 representa um arco de 90° subdivididos a
cada 10°.
∘
Figura 4.27 – Ângulos de 0° a 90°
4.7.1.2.
Radiano
Um Radiano (1 𝑟𝑎𝑑) é a medida de um arco cujo
comprimento (𝐿) é igual ao raio (𝑅) da circunferência que o
contém. Como ao arco está associado um ângulo central, também
podemos dizer que 1 radiano é a medida deste ângulo, o qual
determina um arco de comprimento igual ao raio da respectiva
circunferência. O comprimento de um arco qualquer está
representado na Figura. 4.28.
A medida do ângulo de uma volta completa é de 2𝜋 𝑟𝑎𝑑,
onde 𝜋 ≈3.14159265..., é um número irracional.
Página | 25
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
26
Figura 4.28 – Comprimento de arco
Pela definição de radiano temos que:
•
Se 𝛼 = 2 𝑟𝑎𝑑 então 𝐿 = 2 𝑅 ;
•
Se 𝛼 = 3 𝑟𝑎𝑑 então 𝐿 = 3 𝑅 , etc.
•
Se o ângulo for dado em radianos, o comprimento do arco fica
determinado pela equação (4.3):
𝐿 = 𝛼∙𝑅
(4.3)
com 𝛼 dado em radianos.
4.8.
Conversão de unidades
Dado um ângulo 𝛼 em grau (𝛼 ° ) podemos ter determinar
seu valor em radianos (𝛼𝑟𝑎𝑑 ), ou vice e versa, utilizando a equação
(4.4).
360
𝛼°
=
2𝜋
(4.4)
𝛼𝑟𝑎𝑑
Exemplo 4.7: Determine o valor de 𝛼 = 45° em radianos.
Solução:
Página | 26
27
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Para a solução desse exemplo, utilizamos a regra de três
denotada pela equação (I), a fim de determinarmos o valor de 𝛼 .
360
45
𝑥=
=
2𝜋
𝑥
(I)
2𝜋 ∙ 45
𝜋
=
360
4
Assim, 𝛼 será:
𝛼 = 45° =
𝜋
𝑟𝑎𝑑
4
Exemplo 4.8: Determine o valor de 𝛼 = 2𝜋⁄3 𝑟𝑎𝑑 em graus.
Solução:
Para o Exemplo 4.8, utilizaremos o mesmo método de
resolução do Exemplo 4.7, a regra de três, para encontrarmos o
valor de x.
360
𝑥
𝑥=
=
2𝜋
2𝜋
3
(I)
2 𝜋 ∙ 120
= 120°
2𝜋
Exemplo 4.9: Duas polias de raios iguais a 12 cm são ligadas por
uma correia, como mostra Figura 4.29.
Página | 27
28
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.29 –Figura referente ao Exemplo 4.9.
Calcule o comprimento aproximado da correia, assumindo
que a distâncias entre os centros das polias é 40 cm. (Use 𝜋 =
3,14).
Solução:
Para determinar o comprimento da correia (L), é
necessário calcular o comprimento do arco (Ca) de duas
circunferências utilizando a equação (I).
𝐶𝑎 = 2𝜋. 𝑟 = 2𝜋. 12 = 75,36 𝑐𝑚
(I)
O comprimento da correia (definido pela equação (II)) será
dado pela soma do comprimento do arco e da distância entre os
centros das correias (d).
𝐿 = 𝐶𝑎 + 2𝑑 = 75,36 + 2.40 = 155,36 𝑚
(II)
Dessa forma, o comprimento da correia será de 155,36 cm.
Exemplo 4.10: Determine quantas voltas por segundo deve dar
cada roda de um automóvel na velocidade linear constante de 31,4
𝑚/𝑠, sabendo que o raio de cada roda é 25 cm e que a roda não
desliza durante a rolagem (adotar 𝜋 = 3.14).
Página | 28
29
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Solução:
Distância percorrida em 1 segundo: 𝐿 = 31,4 𝑚. E o raio
da roda: 𝑅 = 25 𝑐𝑚 = 0.25 𝑚.
Utilizando a equação (I), obteremos o valor de 𝛼 .
(I)
𝐿 = 𝛼∙𝑅
𝛼=
𝐿 31.4
=
= 125,6 𝑟𝑎𝑑
𝑅 0.25
Cada volta de roda equivale a um ângulo de 2𝜋 𝑟𝑎𝑑. Se o
ângulo total percorrido por cada roda é de 𝛼 = 125,6 𝑟𝑎𝑑 , então
o número de voltas (𝑛) é calculado pela equação (II):
𝑛=
𝑛=
4.9.
𝛼
2𝜋
(II)
125,6
125,6
=
= 20 𝑣𝑜𝑙𝑡𝑎𝑠
2𝜋
2 ∙ 3,14
Classificação dos Ângulos
Em relação à sua medida, a Figura 4.30 apresenta uma
relação esquemática entre ângulos agudo, obtuso, reto, raso, de
uma volta e côncavo.
Página | 29
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
30
Figura 4.30 – Representação de ângulos: (a) ângulo agudo, (b) ângulo
obtuso, (c) ângulo reto, (d) ângulo raso, (e) ângulo de uma volta, (f)
côncavo.
4.9.1. Em relação a outro ângulo
Na geometria, há relação entre dois ângulos quando estes
são iguais ou - quando somados - resultam em um terceiro, por
exemplo.
•
Congruentes: Dois ângulos são chamados congruentes quando
suas medidas forem iguais.
•
Complementares:
Dois
ângulos
são
chamados
complementares quando a soma entre eles for igual a 90° .
Página | 30
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
31
•
Suplementares: Dois ângulos são chamados suplementares
quando a soma entre eles for igual a 180° .
•
Replementares: Dois ângulos são chamados replementares
quando a soma entre eles for igual a 360° .
4.9.2. Em relação à posição de ângulos formados por duas
retas paralelas cortadas por uma reta transversal
(Figura. 4.31).
Figura 4.31 – Ângulos formados por duas retas cortadas por uma
transversal.
•
Os ângulos correspondentes (quando estão na mesma posição)
são congruentes, isto é, são iguais.
a) Ângulos congruentes: b e f.
• Os ângulos colaterais (mesmo lado) são suplementares.
a) Ângulos colaterais internos: h e c.
b) Ângulos colaterais externos: d e g.
• Os ângulos alternos (lados alterados) são congruentes.
a) Ângulos alternos internos: b e h.
b) Ângulos alternos externos: a e g.
Página | 31
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
32
•
Os ângulos opostos pelo vértice (ângulos cujos lados são
semirretas opostas aos lados do outro) são congruentes.
a) Ângulos opostos pelo vértice: b e d.
Exemplo 4.11: Determine o valor do ângulo 𝑎, na Figura 4.32,
sabendo que ℎ = 40° .
Figura 4.32 – Figura referente ao Exemplo 4.11.
Solução:
Os ângulos ℎ e 𝑑 são correspondentes, pois ocupam a
mesma posição. Portanto, são iguais.
𝑑 = ℎ = 40°
(I)
Os ângulos a 𝑎 e 𝑑 são suplementares, então a soma deles é
igual a equação (II). E substituindo o valor de d nela, adquirimos
o valor de 𝑎.
𝑎 + 𝑑 = 180°
(II)
𝑎 + 40° = 180°
Página | 32
33
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝑎 = 180° − 40° ∴ 𝑎 = 140°
Exemplo 4.12: Na Figura 4.33, determinar os valores dos
ângulos x, y e z.
Figura 4.33 – Figura referente ao Exemplo 4.12.
Solução:
Os ângulos 4𝑥 e 𝑧 são opostos pelo vértice, portanto são
iguais.
4𝑥 =𝑧
𝑥=
(I)
𝑧
4
Os ângulos 𝑥 e 𝑧 são suplementares, então a soma deles é
igual a equação (II). E substituindo a relação de x nesta, obteremos
o valor de z.
𝑥 + 𝑧 = 180°
(II)
Página | 33
34
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝑧
+ 𝑧 = 180
4
𝑧 + 4 𝑧 = 180 ∙ 4 → 5 𝑧 = 720 →
𝑧 = 144 ∴ 𝑧 = 144°
Assim, substituímos o valor de z na equação (I) para
calcularmos o valor de x.
𝑥=
𝑧 144
=
= 36 ∴ 𝑥 = 36°
4
4
Os ângulos x e 2y são iguais por serem opostos pelo vértice.
Assim essa relação será representada pela equação (III).
(III)
𝑥 = 2𝑦
Para termos o valor de y, isolamos o e substituímos o valor
numérico de x.
𝑦=
𝑥 36°
=
= 18°
2
2
Logo x, y e z serão, respectivamente, 36°, 18° 𝑒 144°.
4.10. Polígono
Um polígono é uma figura plana limitada por uma linha
poligonal fechada formada por segmentos consecutivos não
colineares. Chamamos de polígono regular o polígono cujos lados
e ângulos internos são congruentes (mesmas medidas).
4.10.1. Classificação quanto ao número de lados.
Página | 34
35
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Os Polígonos são classicados de acordo com a quantidade
de lados que estes possuem (ver Figura 4.34). Sendo denominados
segundo a Tabela 4.1:
Figura 4.34 – Representação de polígonos quanto aos lados
Número de lados
Nomenclatura
3
Triângulo
4
Quadrilátero
5
Pentágono
Página | 35
36
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
6
Hexágono
7
Heptágono
8
Octógono
9
Eneágono ou Nonágono
10
Decágono
11
Hendecágono ou Undecágono
12
Dodecágono
Tabela 4.1 – Nomenclatura de Polígonos de acordo com a quantidade de
lados.
4.11. Semelhança de Polígonos
Dois polígonos (ver Figura 4.35) de mesmo número de
lados A , B , C , D e E e A’,B’,C’,D’ e E’ são ditos semelhantes se
forem satisfeitas simultaneamente ambas as condições:
i)
Ângulos correspondentes iguais:
̂′ ; 𝐶̂ ≅ ̂
𝐴̂ ≅ 𝐴̂′ ; 𝐵̂ ≅ 𝐵
𝐶′ …
ii)
Lados correspondentes proporcionais:
Página | 36
37
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝐴𝐵
𝐵𝐶
𝐶𝐷
=
=
=⋯=𝑘
𝐴′𝐵′ 𝐵′𝐶′ 𝐶′𝐷′
onde 𝑘 é a razão de semelhança
A razão de semelhança 𝑘 pode ser de ampliação (𝑘 > 1) ou
de redução (𝑘 < 1).
Figura 4.35 – Semelhança de polígonos quanto ao formato .
Exemplo 4.13: Determine os comprimentos x, y e z dos
polígonos da Figura 4.36, sabendo que eles são semelhantes.
Figura 4.36 – Figura referente ao Exemplo 4.13.
Página | 37
38
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Solução:
Se 𝐴𝐵𝐶𝐷 ~𝐴′ 𝐵 ′ 𝐶 ′ 𝐷 ′
prevalece a igualdade (I).
𝐴𝐵
𝐴′ 𝐵′
então
𝐵𝐶
𝐶𝐷
podemos
afirmar
𝐷𝐴
que
(I)
= 𝐵′ 𝐶 ′ = 𝐶 ′ 𝐷′ = 𝐷′ 𝐴′ = 𝑘
Assim, obtemos – a partir da igualdade (II) – o valor de k.
𝐵𝐶
4
𝐵′ 𝐶 ′
2
(II)
=6=3=𝑘
Com o valor de K, é possível calcular o valor de x,
posteriormente o de y e z – de acordo com as equações de (III) à
(V).
𝐷𝐴
𝐷 ′ 𝐴′
𝑥 2
=
3 3
𝐴𝐵
𝐴′ 𝐵′
∴
𝐶𝐷
𝐶 ′ 𝐷′
(III)
∴ 𝑥 = 2 𝑐𝑚
(IV)
=𝑘
𝑦
2
=
5,7 3
2,4 2
=
𝑧
3
=𝑘
𝑦 = 3,8 𝑐𝑚
(V)
=𝑘
∴
𝑧 = 3,6 𝑐𝑚
Conclui-se que os comprimentos de x, y, e z são,
respectivamente, x = 2 cm, y = 3,8 cm e z = 3,6 cm.
Página | 38
39
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
4.12. Semelhança de Triângulos
Não é necessário que sejam conhecidos todos os lados e
todos os ângulos de dois triângulos para que a semelhança entre
eles possa ser assegurada. Para garantir a semelhança de dois
triângulos, basta seguir uma das condições seguintes.
i)
Caso LLL: Se dois triângulos possuem os seus lados
correspondentes proporcionais, então eles são semelhantes,
conforme a Figura. 4.37.
Figura 4.37 – Semelhança de triângulos quanto aos lados
ii)
Caso AA: Se dois triângulos possuem dois ângulos
iguais, então eles são semelhantes. O terceiro ângulo é facilmente
determinado, pois a soma dos ângulos internos do triângulo é de
180° , conforme Figura. 4.38.
Figura 4.38 – Semelhança de triângulos quanto aos ângulos.
Página | 39
40
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
iii)
Caso LAL: Se dois lados de um triângulo são
proporcionais aos lados correspondentes do outro triângulo e se o
ângulo entre estes lados for igual ao correspondente do outro
triângulo, então os triângulos são semelhantes (ver Figura. 4.39).
Figura 4.39 – Semelhança de triângulos quanto a dois lados e um ângulo
A consequência dessa condição é que toda reta traçada
paralela a um dos lados de um triângulo determina outro triângulo
semelhante ao primeiro, como é possível observar na Figura. 4.40.
Figura 4.40 – Demonstração de semelhança de lado e ângulo de dois
triângulos quaisquer
⃡ então ∆ABC~∆ AB′C′
Se r//BC
Página | 40
41
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Exemplo 4.14: Determine o valor de 𝑥 na Figura 4.41.
Figura 4.41 – Figura referente ao Exemplo 4.14.
Solução:
Os triângulos ABC e AED são semelhantes, pois possuem
dois ângulos iguais, são triângulos retângulos e possuem o ângulo
 em comum.
Para calcularmos o valor de x, utilizaremos a equação (I).
𝐴𝐵
𝐴𝐸
𝐶𝐴
= 𝐷𝐴
(I)
Assumindo que a existência das igualdades (II) e (III).
𝐴𝐵
𝐴𝐸
𝐶𝐴
𝐷𝐴
𝑥
=6
8+6
+5
=𝑥
(II)
(III)
Por conseguinte, substituímos (II) e (III) em (I) para
calcularmos o valor de x.
𝑥 8+6
=
6 𝑥+5
𝑥 2 + 5𝑥 − 84 = 0
Página | 41
42
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Resolvendo a equação de segundo grau.
𝑥=
−5 ± √52 − 4.1. (−84) −5 ± 19
=
2.1
2
𝑥 = −12 ∴ 𝑥′ = 7
Como a medida de comprimento não pode ser negativa,
teremos
que
o
valor
de
x
é
𝑥 = 7.
4.13. Perímetro e Área
Podemos ter como Perímetro a medida do contorno de um
objeto bidimensional, ou seja, é a soma dos comprimentos de
todos os lados de uma figura geométrica. Enquanto que a Área é
uma função que associa a cada figura um número positivo que
representa a medida de sua superfície.
Exemplo 4.15: Considerando uma sala cuja planta baixa está
indicada na Figura 4.42.
Figura 4.42 – Figura referente ao Exemplo 4. 15.
Página | 42
43
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
a) Quantos metros de rodapé serão necessários para contorná-la?
b) Deseja-se revestir o piso da sala com lajotas quadradas de 1 𝑚2
(Figura. 4.43). Quantas lajotas serão necessárias?
c) Qual é a área da sala?
Solução:
a)
Desejamos saber a medida do contorno da sala, isto é, o
perímetro 𝑃 do retângulo, o qual pode ser calculado ao somarmos
os 4 lados da sala.
𝑃 = 7 + 4 + 7 + 4 = 22 𝑚
(I)
Portanto, serão necessários 22 m de rodapé.
b)
Se colocarmos sobre a sala uma malha quadriculada na
qual cada quadrado representa uma lajota, o número de lajotas
necessárias será a quantidades de quadrados da malha.
Figura 4.43 – Malha Quadriculada.
Página | 43
44
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Precisaremos de 28 lajotas.
c)
Cada lajota pode ser considerada como uma unidade de
área (𝑢. 𝑎 = 1 𝑚2 ). Para revestir a sala são necessárias 28 lajotas,
isto é, 28 𝑢. 𝑎., então a área (𝑆) da sala é igual a equação (II).
𝑆 = 28 𝑢. 𝑎 = 28 ∙ 1 𝑚2 = 28 𝑚2
(II)
Nos subtópicos seguintes, indicamos o perímetro (2𝑝) e a
área (𝑆) de algumas figuras geométricas planas.
4.13.1. Quadrado
O perímetro e a área do quadrado (representado pela
Figura 4.44) podem ser calculados segundo as equações (4.5) e
(4.6)
Página | 44
45
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.44 – Representação de um quadrado.
𝑝 = 4. 𝑎
𝑆 = 𝑎2
(4.5)
(4.6)
4.13.2. Círculo
O perímetro e a área do círculo (representado pela Figura
4.45) podem ser calculados segundo as equações (4.7) e (4.8).
Figura 4.45 – Representação de Circulo.
𝑝 = 2. 𝜋. 𝑟
𝑆 = 𝜋. 𝑟 2
(4.7)
(4.8)
Página | 45
46
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Observe que o perímetro do círculo é o comprimento da
circunferência (𝐿 = 𝛼 𝑟 , 𝛼 = 2𝜋)
4.13.3. Paralelogramo
O perímetro e a área do paralelogramo (representado pela
Figura 4.46) podem ser calculados segundo as equações (4.8) e
(4.9).
Figura 4.46 – Representação de um paralelogramo
𝑝 = 2𝑎 + 2𝑏
(4.8)
𝑆 = 𝑏. ℎ
(4.9)
4.13.4. Triângulo
O perímetro e a área do triângulo (representado pela
Figura 4.47) podem ser calculados segundo as equações (4.10) e
(4.11)
Página | 46
47
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.47 – Representação de um triângulo
𝑆=
𝑏ℎ
(4.10)
2
(4.11)
𝑝 =𝑎+𝑏+𝑐
Observe que a área do triângulo é igual à metade da área do
paralelogramo.
Existem outras fórmulas para o cálculo da área de um
triângulo evolvendo apenas lados ou outros elementos como o
ângulo entre dois lados, raio da circunferência inscrita, etc...
A expressão utilizada no cálculo da área de triângulo e que
envolve apenas os lados do triângulo é chamada Fórmula de Heron
e está mostrada na equação (4.12).
(4.12)
𝑆 = √𝑝𝑠 (𝑝𝑠 − 𝑎)(𝑝𝑠 − 𝑏)(𝑝𝑠 − 𝑐)
Onde 𝑝𝑠 é o semiperímetro do triângulo, ou seja:
𝑝𝑠 =
𝑎+𝑏+𝑐
2
(4.13)
4.13.5. Losango
O perímetro do triângulo (representado pela Figura 4.48)
pode ser calculado segundo a equação (4.14)
Página | 47
48
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.48 – Representação de um losango
𝑝 = 4. 𝑎
(4.14)
Assumindo que 𝑎 é igual a equação (4.15).
𝑎=
√𝑑 2 +𝐷2
2
(4.15)
Sendo 𝐷 a diagonal maior e d, a menor.
E a área é calculada a partir da equação (4.16).
𝑆=
𝐷.𝑑
2
(4.16)
Observe que o losango ocupa a metade do retângulo cujos
lados têm medidas iguais às diagonais.
4.13.6. Trapézio
O perímetro e a área do trapézio (representado pela Figura
4.49) podem ser calculados segundo as equações (4.17) e (4.18)
Página | 48
49
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.49 – Representação de um trapézio
(4.17)
𝑝=𝑎+𝐵+𝑏+𝑐
𝑆=
(𝐵+𝑏).ℎ
(4.18)
2
A área do trapézio pode ser obtida pela soma das áreas dos
dois triângulos determinados por uma de suas diagonais.
4.13.7. Polígono Regular de 𝒏 lados
O perímetro de um polígono regular de n lados
(representado pela Figura 4.50) pode ser calculado segundo a
equação (4.19).
Figura 4.50 – Representação de um polígono regular
Página | 49
50
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
(4.19)
𝑝 = 𝑛 .𝑙
Um Polígono regular de 𝑛 lados pode ser dividido, a partir
do centro, em 𝑛 triângulos isósceles congruentes de altura 𝑎, tal
altura é denominada apótema. A área do polígono será 𝑛 vezes a
área deste triângulo, tal qual a equação (4.20).
𝑙.𝑎
𝑆 = 𝑛. ( )
2
(4.20)
Exemplo 4.16: Calcule a área da superfície composta pelas áreas
rachuradas e pontilhadas da Figura 4.51.
Figura 4.51 – Figura referente ao exemplo 4.
A unidade de área é um quadrado de lado com
comprimento igual a 1 𝑐𝑚, então 𝑢. 𝑎. = 1 𝑐𝑚2.
Solução:
Cada retângulo pontilhado é formado por 2 𝑢. 𝑎., então sua
área é 𝑆𝑝 = 2 𝑐𝑚2 .
Página | 50
51
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
A parte rachurada de baixo da figura é um semicírculo de
raio igual a 2 𝑐𝑚 e a parte branca de cima da figura também. Assim
a parte rachurada se encaixa perfeitamente na parte branca da
figura, formando um retângulo rachurado com 8 𝑢. 𝑎. Então, a área
hachurada é 𝑆ℎ = 8 𝑐𝑚2 .
A área total da superfície é calculada pela equação (I).
𝑆𝑇 = 2 ∙ 𝑆𝑝 + 𝑆ℎ = 2 ∙ 2 + 8 = 12 𝑐𝑚2
(I)
Exemplo 4.17: Calcule a área da coroa circular de raio 𝑅 = 20 𝑐𝑚
e largura 𝑡 = 5 𝑐𝑚, indicada na Figura 4.52, isto é, calcule a área
da superfície colorida na figura.
Figura 4.52 –Figura referente ao exemplo 4..
Solução:
Podemos observar na figura que a área da coroa circular (I)
é igual à diferença entre a área do círculo maior (II) e da área do
círculo menor (III).
𝑆1 = 𝜋. 𝑅 2
𝑆2 = 𝜋. 𝑟
2
𝑆𝑐 = 𝑆1 − 𝑆2
(I)
(II)
(III)
𝑆𝑐 = 𝜋. (𝑅 2 − 𝑟 2 )
Página | 51
52
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Como 𝑅 = 20 𝑐𝑚 e 𝑡 = 5 𝑐𝑚, então podemos calcular o raio
a partir da equação (IV).
(IV)
𝑟 =𝑅−𝑡
Logo, substituindo a equação IV em III, obteremos a área
𝑆𝑐 .
𝑆𝑐 = 𝜋. (𝑅 2 − 𝑟 2 ) = 𝜋. (202 − 152 ) = 175 𝜋 𝑐𝑚2
𝑆𝑐 ≅ 175 ∙ 3,14 = 549,5 𝑐𝑚2
4.14. Volume
Volume é o espaço ocupado por um corpo e também a
capacidade do corpo de comportar alguma substância.
A unidade de volume no Sistema Internacional de unidade
é o metro cúbico (𝑚3 ). Um metro cúbico (1 𝑚3 ) pode ser
representado pelo espaço ocupado por cubo de aresta igual a 1 𝑚.
Existe outro conceito relacionado com volume, o de
capacidade. Volume e capacidade não são a mesma coisa.
Capacidade está relacionado com o espaço interno de um
recipiente, ou seja, ele descarta o volume ocupado pelo próprio
material. A unidade utilizada para capacidade é o litro (𝐿). Para
alguns problemas práticos usa-se a relação:
1 𝐿 = 1000 𝑚3
Exemplo 4.18: Considere um tanque de água 4 𝑚 de
comprimento, 2 𝑚 de largura e 2 𝑚 de altura, conforme indicado
na Figura 4.53.
Página | 52
53
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.53 – Tanque de água
a) Desprezando a espessura, quantas caixas d’água de 1 𝑚 ×
1𝑚 ×1 𝑚 = 1 𝑚3 caberão dentro do tanque?
b) Qual é o volume do tanque?
c) Quantos litros de água serão necessários para encher o
tanque?
Solução:
a) Traçando no tanque uma malha de cubos na qual cada cubo
representa a caixa d’água, observa-se que foram utilizadas 16
caixas.
b) Cada caixa d’água pode ser considerada como uma unidade
de volume (1 𝑢. 𝑎 = 1 𝑚3). Para preencher o tanque são
necessárias 16 caixas, isto é, 16 𝑢. 𝑣., então o volume (𝑉) do
tanque é obtido pela equação (I).
𝑉 = 16 𝑢. 𝑣
𝑉 = 16 ∙ 1 𝑚3 = 16 𝑚3
(I)
(II)
Página | 53
54
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
c) A quantidade de água necessária para preenche o tanque pode
ser definida ao multiplicarmos o volume em 𝑚3 por 1000.
Haja vista que 1𝑚3 = 1 000𝑙.
𝑉 = 16 ∙ 103 𝑙
(IV)
𝑉 = 16000 𝑙
Nos subtópicos seguintes, mostraremos como calcular o
volume de alguns Sólidos Geométricos. Para determina-lo, é
necessário multiplicarmos a área da base e a altura do sólido.
É válido lembrar-vos que um sólido possui diferentes
bases, tais como: quadrangular, retangulares, trapezoidais etc.
Dessa maneira, temos seguintes sólidos.
4.14.1. Cubo
Como o cubo (Figura 4.54) possui as mesmas medidas nas
três dimensões 𝐿 (largura, altura e comprimento), isto é, possui a
base quadrada. O seu volume será o produto entre elas, tal qual é
explicitado na equação (4.21)
Página | 54
55
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.54 – Representação de um cubo.
𝑉 = 𝐿3
(4.21)
4.14.2. Paralelepípedo
O cálculo do volume do paralelepípedo (Figura 4.55) é
semelhante ao do cubo. Entretanto, ele pode possuir bases
quadradas ou retangulares.
A equação (4.22) Explicita tais definições.
Figura 4.55 – Representação de um paralelepípedo
𝑉 =𝐿∙𝑙∙ℎ
(4.22)
4.13.3. Prisma
O prisma (Figura 4.56) é um sólido que pode possuir
diferentes tipos de base, sejam estas quadradas, trapezoidais,
retangulares etc. Dessa forma, o seu volume será calculado a partir
da área dessa base e a altura (4.23).
Página | 55
56
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.56 – Representação de um prisma
𝑉 = 𝐴𝑏𝑎𝑠𝑒 ∙ ℎ
(4.23)
4.14.4. Cilindro
O cilindro (Figura 4.57) possui as bases inferior e superior
circulares. O seu volume é obtido a partir da equação (4.24).
Figura 4.57 – Representação de um cilindro
𝑉 = 𝐴𝑏𝑎𝑠𝑒 ∙ ℎ
(4.24)
𝑉 = 𝜋. 𝑟 2 ∙ ℎ
4.14.5. Pirâmide
A pirâmide (Figura 4.58) pode dispor de bases
triangulares, pentagonais, hexagonais etc. Com a equação (4.25)
determinamos o volume desta.
Página | 56
57
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.58 - Representação de uma pirâmide.
𝑉=
𝐴𝑏𝑎𝑠𝑒 ∙ℎ
3
(4.25)
4.15.6. Cone
O cone (Figura 4.59) é definido como uma pirâmide de
infinitos lados. Nesse caso, ele possui uma base circular. Com isso,
para determinarmos o seu volume, utilizamos a equação (4.26)
Figura 4.59- Representação de um cone
𝑉=
𝐴𝑏𝑎𝑠𝑒 ∙ℎ
3
(4.26)
Página | 57
58
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝑉=
𝜋∙𝑟 2 ∙ℎ
3
4.15.7. Tronco de Cone
Agora imagine um cone seccionado. É possível calcularmos
o volume da parte inferior deste - chamada de tronco de cone
(Figura 4.60) – utilizando o método de semelhança de triângulos.
Figura 4.60 – Representação de um tronco de cone.
Primeiro, separamos o triângulo retângulo (Figura 4.61).
Página | 58
59
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.61 – Representação do triângulo retângulo,
Por semelhança de triângulos, temos a equação (I).
𝐻+ℎ
ℎ
=
𝑅
(I)
𝑟
Manipulando algebricamente, obteremos a Equação (II).
(𝐻 + ℎ)𝑟 =
𝑅
𝑟
𝐻𝑟 + ℎ𝑟 = 𝑅ℎ
𝐻𝑟 = 𝑅ℎ − ℎ𝑟
𝐻𝑟 = ℎ(𝑅 − 𝑟)
𝐻𝑟
ℎ = 𝑅−𝑟
(II)
O volume do tronco de cone será a diferença entre o volume
do cone maior e o cone menor (III).
𝑉𝑇 = 𝑉𝑐𝑜𝑛𝑒 𝑚𝑎𝑖𝑜𝑟 − 𝑉𝑐𝑜𝑛𝑒 𝑚𝑒𝑛𝑜𝑟
1
1
𝑉𝑇 = 𝜋𝑅2 (𝐻 + ℎ) − 𝜋𝑟 2 ℎ
3
3
Página | 59
60
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
𝑉𝑇 =
𝜋 2
(𝑅 𝐻 + 𝑅2 ℎ − 𝑟 2 ℎ)
3
𝜋
(III)
𝑉𝑇 = (𝑅2 𝐻 + ℎ(𝑅2 − 𝑟 2 )
3
Substituindo II em III, encontramos a equação 4.27.
𝜋
𝑉𝑡 = 3 𝐻(𝑅 2 + 𝑅𝑟 + 𝑟 2 )
(4.27)
4.15.8. Esfera
A esfera (Figura 4.62) é um corpo maciço gerado a partir
da rotação de um de semicírculo em torno de um eixo. Podemos
calcular o seu volume segundo a equação 4.28.
Figura 4.62 – Representação de uma esfera.
𝑉=
4∙𝜋∙𝑟 3
3
(4.28)
Exemplo 4.19: A área de uma pirâmide quadrangular é igual a
9 𝑐𝑚2 e a sua altura é igual ao comprimento das laterais de sua
base. Com estas informações, determine o volume da pirâmide.
Página | 60
61
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Solução:
Uma pirâmide quadrangular é uma pirâmide cuja base é
um quadrado. Chamando de 𝑎 o comprimento dos lados deste
quadrado, a área da base é igual a equação (I).
𝐴𝑏𝑎𝑠𝑒 = 𝑎2
𝐴 = 9 𝑐𝑚2 ∴
(I)
𝑎 = 3 𝑐𝑚
A altura ℎ da pirâmide é igual ao comprimento do lado da
base, então ℎ = 𝑎. Assim, a Equação (II) determinará o volume do
sólido.
𝑉𝑝𝑖𝑟â𝑚𝑖𝑑𝑒 =
𝑉𝑝𝑖𝑟â𝑚𝑖𝑑𝑒 =
𝐴𝑏𝑎𝑠𝑒 ∙ℎ
3
(II)
9∙3
= 9 𝑐𝑚3
3
Exemplo 4.20: Dispomos de 1300 cm2 de um papel adesivo para
encapar uma caixa com a forma de um paralelepípedo retângulo
com 20 cm de comprimento e 15 cm de largura. Qual deve ser o
volume desta caixa considerando que todo o papel adesivo
disponível será utilizado, que não haverá sobreposição dele e que
toda a superfície da caixa será encapada?
Solução:
A área total a ser encapada é explicitada pela equação (I).
𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑏𝑎𝑠𝑒 + 𝐴𝑡𝑎𝑚𝑝𝑎 + 𝐴𝑙𝑎𝑡𝑒𝑟𝑎𝑙
(I)
Página | 61
62
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
A altura ℎ da caixa é desconhecida e a base da caixa é um
retângulo de 15 𝑐𝑚 ×20 𝑐𝑚. Assim, a área da base será igual a
equação (II).
𝐴𝑏𝑎𝑠𝑒 = 𝐴𝑡𝑎𝑚𝑝𝑎 = 20 ∙ 15 = 300 𝑐𝑚3
(II)
A área lateral será dada pela Equação (III).
(III)
𝐴𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝑝𝑒𝑟í𝑚𝑒𝑡𝑟𝑜 𝑏𝑎𝑠𝑒 ×𝑎𝑙𝑡𝑢𝑟𝑎
𝐴𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = (20 + 15 + 20 + 15) ∙ ℎ = 70 ∙ ℎ
Como já possuímos os valores numéricos das 3 áreas e a
soma delas, é possível determinar a altura da caixa e o volume
desta pelas Equações (I) e (IV), respectivamente.
𝐴𝑡𝑜𝑡𝑎𝑙 = 300 + 300 + 70 ℎ = 1300 𝑐𝑚2
70ℎ = 1300 − 600 → ℎ =
700
→ ℎ = 10
70
𝑉𝑐𝑎𝑖𝑥𝑎 = 𝐴𝑏𝑎𝑠𝑒 ∙ ℎ = 300 ∙ 10
(IV)
𝑉𝑐𝑎𝑖𝑥𝑎 = 3000 𝑐𝑚3
Página | 62
63
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
LISTA DE EXERCÍCIOS
Aqui estão questões relacionadas ao capítulo estudado. É
importante o esforço para resolver todas as questões. Em caso de
dúvidas os monitores do programa estão prontos para lhe ajudar.
Bons estudos!
Geometria Plana
̅̅̅̅, na Figura 4.20, sabendo
1) Determine a medida do segmento 𝐴𝑃
que 𝑀𝑃 = 20 𝑐𝑚 ; 𝑃𝑁 = 50 𝑐𝑚; 𝑃𝐵 = 60 𝑐𝑚.
Figura 4.63 – Figura referente ao Exercício 1.
2) Na Figura 4.64, calcule o valor de 𝑥.
Página | 63
64
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.64 – Figura referente ao Exercício 2.
3) Determine os valores de 𝑥, 𝑦.e 𝑧 indicados na Figura. 4.65.
Figura 4.65 – Figura ilustrativa referente ao Exercício 3.
4) Determine o valor do ângulo 𝑥 da Figura 4.66, sabendo que a
soma dos ângulos internos de um quadrilátero é de 360°.
Figura 4.66 – Figura ilustrativa referente ao Exercício 4.
Página | 64
65
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
5) Testes efetuados em um pneu de corrida constataram que, a
partir de 185.600 voltas, ele passa a se deteriorar. Sabendo que o
diâmetro do pneu é 0,5 𝑚, determine, aproximadamente, a
distância em 𝑘𝑚 que ele poderá percorrer, sem riscos para o piloto.
6) A soma das áreas dos três quadrados, representados pela Figura
4.67, é igual a 83 𝑐𝑚2 . Determine a área do quadrado maior.
Figura 4.67 – Figura ilustrativa referente ao Exercício 6.
7) O circuito triangular de uma corrida está esquematizado na
Figura 4.68.
Página | 65
66
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.68 – Figura ilustrativa referente ao Exercício 7.
As ruas TP e SQ são paralelas. Partindo de S, cada corredor deve
percorrer o circuito passando, sucessivamente, por R, Q, P, T,
retornando, finalmente, a S. Qual será o perímetro do circuito?
8) Uma mulher gostaria de pendurar um quadro circular. Como o
quadro era pesado e o barbante de que ela dispunha não era muito
resistente, resolveu usar 3 pedações de barbante para pendurar o
quadro. Os comprimentos dos pedações de barbamte era PT, PB E
PD. Na Figura 4.69, o ponto T é o ponto de tangência da
circunferência.
Figura 4.69 – Figura ilustrativa referente ao Exercício 8.
Se 𝑃𝐶 = 4 𝑐𝑚, 𝑃𝐷 = 6𝑐𝑚 𝑒 𝑃𝐴 = 3 𝑐𝑚, determine as medidas de
PB E PT.
Página | 66
67
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
9) Encontre a área de um retângulo, sabendo que a diagonal mede
10 m e o perímetro é igual a 28 m.
10) Na Figura 4.70, P é o ponto médio do segmento ̅̅̅̅
𝐴𝐷 do
paralelogramo ABCD. Calcule a área, em metros quadrados, do
triângulo APB, sabendo-se que a área do paralelogramo é 136 𝑚2.
Figura 4.70 – Figura ilustrativa referente ao Exercício 10.
11) Calcule a área do segmento circular da Figura 4.71. Use 𝜋 =
3.14 𝑒 √3 = 1.73.
Figura 6.71 – Figura ilustrativa referente ao Exercício 11.
Página | 67
68
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Geometria Espacial
12) Na Figura 4.72, 𝐴𝐵𝐶 é um quadrante de um círculo de raio
igual a 3 𝑐𝑚 e 𝐴𝐷𝐸𝐹 é um quadrado de lado igual a 1 𝑐𝑚. Considere
o sólido gerado pela rotação de 360° da região hachurada da figura
em torno da reta 𝐴𝐵. Determine o volume deste sólido de
revolução.
Figura 4.72 – Figura referente ao Exercício 12
13) Dois cubos de alumínio com arestas medindo 10 𝑐𝑚 e 6 𝑐𝑚 são
levados juntos à fusão. A seguir, o alumínio líquido é moldado na
forma de um paralelepípedo reto de base quadrada de lado igual a
8 𝑐𝑚. Determine a altura do paralelepípedo.
14) Uma pirâmide (ilustrada pela Figura 4.73) tem a altura
medindo 30 cm e a área da base igual a 150 𝑐𝑚2. Qual é a área da
seção superior do tronco desta pirâmide, obtido pelo corte desta
pirâmide por um plano paralelo à base da mesa, sabendo-se que a
altura do tronco da pirâmide é de 17 m?
Página | 68
69
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
Figura 4.73 – Figura ilustrativa referente ao Exercício 14.
15) Um copo de vidro com formato de um cilindro circular reto,
cujo diâmetro interno mede 4 cm, está cheio de um liquido até a
borda. Inclinando esse copo, despeja-se o líquido nele contido até
16
que atinja a marca que dista da borda 𝑐𝑚. Qual o volume do
𝜋
líquido despejado?
16) A Figura 4.74 mostra a maquete do depósito a ser construído.
A escala é 1:500, ou seja, 1 cm, na representação, corresponde a
500 cm na realidade. Qual será a capacidade, em metros cúbicos,
do depósito?
Figura 4.74 – Figura ilustrativa referente ao Exercício 16.
Página | 69
70
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
17)Um recipiente cilíndrico (ilustrado pela Figura 4.75) de 60cm
de altura e base com 20cm de raio está sobre uma superfície plana
horizontal e contém água até a altura de 40cm, conforme indicado
na figura.
Figura 4.75 – Figura ilustrativa referente ao Exercício 17.
Imergindo-se totalmente um bloco cúbico no recipiente, o
nível da água sobe 25%. Considerando 𝜋 igual a 3, qual a medida,
em cm, da aresta do cubo colocado na água?
18) O volume de um cilindro circular reto é 36√6𝜋 𝑐𝑚3 Se a altura
desse cilindro mede 6√6𝑐𝑚, qual será a área total desse cilindro,
em 𝑐𝑚2 ?
19) O raio de uma esfera de metal mede 30 cm. Com o material
dessa esfera, foram fabricadas x esferas de raio medindo 3 cm.
Com bases nessas informações, qual o valor de x?
20) Três bolas de tênis idênticas, de diâmetro igual a 6cm,
encontram-se dentro de uma embalagem cilíndrica com tampa. As
Página | 70
71
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
bolas tangenciam a superfície interna da embalagem nos pontos
de contato, como ilustra a Figura 4.76.
Figura 4.76 – Figura ilustrativa referente ao Exercício 20.
Calcule:
a) a área total, em cm2 , da superfície da embalagem.
b) b) a fração do volume da embalagem ocupado pelas bolas.
21) A Figura 4.77 representa um sólido obtido de um
paralelepípedo retorretangular de dimensões 9 m, 9 m e 8 m, de
onde foram retirados dois outros paralelepípedos de dimensões 3
m, 3 m e 8 m.
Figura 4.77 – Figura ilustrativa referente ao Exercício 21.
Determine:
Página | 71
72
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
a) a área total.
b) o volume do sólido resultante.
Página | 72
73
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
GABARITO
1) 𝑨𝑷 = 𝟐𝟒 𝒎
2) 𝒙 =
𝟐𝟏
𝟐
𝒄𝒎
3) 𝒙 =
𝟔𝟑
𝟏𝟏
;𝒚 =
𝟐𝟏
;𝒛
𝟐
=
𝟐𝟐
𝟗
4) 𝒙 = 𝟕𝟎°
5) 𝟐𝟗𝟏, 𝟓 𝒌𝒎
6) 𝟒𝟗 𝒄𝒎𝟐
7) 𝟏𝟗, 𝟓 𝑲𝒎
8) 𝑷𝑩 = 𝟖𝒄𝒎 𝒆 𝑷𝑻 = 𝟐√𝟔𝒄𝒎
9) 𝟒𝟖 𝒎𝟐
10) 𝟑𝟒 𝒎𝟐
11) 𝟑, 𝟐𝟕 𝒎𝟐
12) 𝟏𝟕𝝅 𝒄𝒎𝟑
13) 𝟏𝟗 𝒄𝒎
14) 𝑨𝒔 = 𝟐𝟖. 𝟏𝟕𝒄𝒎𝟐
15) 𝟑𝟐 𝒄𝒎𝟑
16) 𝟑𝟐𝟒𝟎 𝒄𝒎𝟑
Página | 73
74
MATEMÁTICA ELEMENTAR – CAPÍTULO 4
17) 𝟏𝟎𝟑 √𝟏𝟐
18) 𝟖𝟒 𝝅
19) 𝟏𝟎𝟎𝟎
20) 𝒂) 𝟏𝟐𝟔 𝝅 𝒄𝒎𝟐 , 𝒃)
𝟐
𝟑
21) 𝒂) 𝟓𝟏𝟎 𝒄𝒎𝟐 , 𝒃) 𝟓𝟎𝟒 𝒄𝒎
Página | 74
Download