• 5º ANO ESPECIALIZADO E CURSO PREPARATÓRIO • • 3º SIMULADO/2014 - 1ª ETAPA • MATEMÁTICA Nome do(a) Aluno(a): _______________________________________________________________ Turma: _________ RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (07) deste Simulado. Ele contém 20 (vinte) questões de múltipla escolha. 05) Somente serão tiradas dúvidas de impressão. Para isto chame o fiscal. 02) Você está recebendo junto com a prova um cartão-resposta onde deverá assinalar com caneta azul suas respostas () das questões objetivas. 06) DESENVOLVA TODAS AS QUESTÕES E SEUS RESPECTIVOS CÁLCULOS NA PROVA. Use o verso das folhas para isto. • As respostas a lápis NÃO SERÃO CONSIDERADAS! • Para cada pergunta há somente uma resposta, pense bem antes de assinalar sua opção porque: - as questões rasuradas não serão consideradas; - mais de uma resposta na mesma pergunta invalida a questão. 03) Não se esqueça de preencher o cabeçalho da prova e do cartão-resposta com os dados pedidos. Coloque o nome completo sem abreviaturas. 07) Você terá 2 (duas) horas para fazer esta prova. 04) Não será permitido o uso de corretor. 08) Aguarde o sinal para início. 09) Tire todo o proveito do tempo que lhe é dado. 10) Confira suas respostas antes de passar para o cartão-resposta. 11) Entregue o cartão-resposta ao fiscal da sua sala. Faça tudo com bastante atenção. Boa Prova! 1ª QUESTÃO: Um grupo de 14 amigos comprou algumas pizzas. Eles comeram todas as pizzas, sem sobrar nada. Se cada um dos 6 meninos comeu a metade de uma pizza e cada uma das 8 meninas comeu a quarta parte de uma pizza, podemos afirmar que: A-( ) a quantidade de pizzas inteiras comida por meninos é múltipla de 2. B-( ) a quantidade de pizzas inteiras comida por meninas é múltipla de 3. C-( ) a quantidade de pizzas inteiras comida por meninos e meninas foi a mesma. D-( ) o m.m.c. entre as quantidades de pizzas inteiras comidas por meninos e meninas é 6. E-( ) a quantidade total de pizzas inteiras comida pelos 14 amigos foi 6. 2ª QUESTÃO: Na tabela há um número escondido na casa preta e a soma dos números da primeira linha é igual à soma dos números da segunda linha. Qual é a soma dos valores absolutos do numeral escondido? A-( ) 27 B-( ) 26 C-( ) 24 D-( )3 E-( )8 .2. 3ª QUESTÃO: Júlia vai às compras e visita 4 lojas. Na primeira loja, gasta 100 reais, na segunda loja, gasta metade da quantia que sobrou, na terceira loja, gasta mais 100 reais e na última loja, novamente metade da quantia restante, ficando apenas com R$ 37,50. Com qual quantia Júlia entrou na primeira loja? A-( ) R$ 350,00 B-( ) R$ 450,00 C-( ) R$ 500,00 D-( ) R$ 550,00 E-( ) R$ 600,00 4ª QUESTÃO: Para descobrir o número da casa do professor de Matemática é preciso decifrar o seguinte enigma: “O número da casa corresponde ao menor número que quando dividido por 3, 4, 5 ou 6 deixa resto 2 e quando dividido por 13, deixa resto zero”. Podemos afirmar que a soma dos valores absolutos dos algarismos desse numeral é: A-( ) 10 B-( ) 11 C-( )9 D-( )6 E-( )8 5ª QUESTÃO: O filme “Meu Malvado Favorito” fez o maior sucesso entre o público infantil. Da quantidade de ingressos vendidos em um fim de semana, a quinta parte foi vendido na sexta, 0,25 desse total foi vendido no sábado e o restante foi vendido no domingo. Que fração do total de ingressos sobrou para o domingo? A-( ) 9 20 B-( ) 10 20 C-( ) 11 20 D-( ) 13 20 E-( ) 19 20 .3. 6ª QUESTÃO: 3 Em uma população de 14 milhões de habitantes, são analfabetos. Quantos habitantes compõem a parte alfabetizada 2000 da população? A-( ) 13.979.000 B-( ) 13.899.000 C-( ) 13.989.000 D-( ) 13.799.000 E-( ) 13.879.000 7ª QUESTÃO: O valor da expressão numérica é: 1 1 1 1 1 1 1 1 1 1+ × 1+ × 1+ × 1+ × 1+ × 1+ × 1+ × 1+ × 1+ = 1 2 3 4 5 6 7 8 9 A-( ) 2. B-( ) 5. C-( ) 6. D-( ) 9. E-( ) 10. 8ª QUESTÃO: O professor de Matemática do C.M.R.J. aplicou duas provas a cada um dos cinco alunos que ficaram em recuperação e divulgou as notas por meio do gráfico abaixo: prova 2 10 9 8 7 6 5 4 3 2 1 0 D E B A C 1 2 3 4 5 6 7 8 9 10 prova 1 O aluno A, por exemplo, obteve as notas 9 e 8 nas provas 1 e 2, respectivamente. Já o aluno B, obteve as notas 7 e 6. Para os alunos serem aprovados, devem totalizar, no mínimo, 14 pontos nas duas provas juntas. Analise o gráfico e assinale a opção que apresenta corretamente o número de alunos que foram reprovados? A-( ) cinco B-( ) quatro C-( ) três D-( ) dois E-( ) um .4. 9ª QUESTÃO: Joana foi comprar 20 canetas e comparou os preços em duas lojas. Veja as promoções que ela encontrou: • Na loja A, cada caneta custa 3 reais, mas há uma promoção de 5 canetas pelo preço de 4. • Na loja B, cada caneta custa 3 reais, mas a cada 3 canetas compradas, como brinde, pode-se levar mais 1 caneta de graça. Diante desses dados, é possível afirmar que: A-( ) é mais vantajoso aproveitar a promoção da loja A para comprar as 20 canetas. B-( ) aproveitando a promoção da loja B, Joana gastaria apenas 60 reais na compra das 20 canetas. C-( ) a promoção da loja B dá um desconto total de 18 reais na compra das 20 canetas. D-( ) aproveitando a promoção da loja A, Joana gastaria apenas 48 reais na compra das 20 canetas. E-( ) tanto faz comprar na loja A ou na loja B, pois as promoções são iguais. 10ª QUESTÃO: Quantos algarismos dos numerais que representam múltiplos de 4 escrevo desde o menor numeral de 3 algarismos significativos até o maior numeral de 3 algarismos distintos? A-( ) 872 B-( ) 2.619 C-( ) 657 D-( ) 219 E-( ) 876 11ª QUESTÃO: A figura abaixo representa o terreno de uma grande praça. ¶ ¶ ¶ ¶ ¶ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Legenda: Com base na figura e de acordo com a legenda, é correto afirmar que: A-( ) vinte décimos do terreno corresponde a área verde. B-( ) dez décimos do terreno corresponde ao parquinho. C-( ) dois centésimos do terreno corresponde a área verde. D-( ) um vinte avos do terreno corresponde as torres. E-( ) cinco décimos do terreno corresponde as torres. Parquinho Δ Δ Δ Δ Δ Δ ΔΔ Δ Δ Área verde ¶ Torres .5. 12ª QUESTÃO: Em uma loja de chocolates, uma caixa de bombons pode ser vendida com 20 bombons recheados ou 24 bombons simples, pesando, nos dois casos, meio quilo. João resolveu dar uma dessas para sua mãe, mas pediu que fossem colocados 15 bombons recheados e o restante de bombons simples. Quantos bombons simples foram colocados nesta caixa, sabendo que o peso da mesma atingiu meio quilo? A-( )6 B-( )7 C-( )8 D-( )9 E-( ) 10 13ª QUESTÃO: Uma feira de livros foi instalada num prédio de 3 andares, cada andar foi dividido em 3 setores. Em cada setor havia 3 salas e em cada sala trabalhavam 3 pessoas que foram identificadas, cada uma, com um crachá. Portanto, qual das potências abaixo representa a quantidade mínima de crachás confeccionados? A-( ) 92 B-( ) 53 C - ( ) 43 D-( ) 35 E-( ) 33 14ª QUESTÃO: Foram distribuídas 60 mangas, 72 laranjas e 48 maçãs entre o maior grupo possível de crianças, de maneira que, cada criança recebeu uma mesma quantidade de mangas, laranjas e maçãs. Qual o total de frutas que cada criança recebeu ? A-( ) 9 B-( ) 10 C-( ) 11 D-( ) 12 E-( ) 15 .6. 15ª QUESTÃO: Rosa resolveu distribuir, igualmente, entre seus 12 sobrinhos, a quantia que retirou do seu cofrinho. Para calcular a quantia que foi distribuída, decidiu multiplicar o valor dado a cada um dos seus sobrinhos por 12, porém enganou-se e acabou multiplicando esse valor por 21, obtendo assim um valor superior em 225 reais. Calcule a quantia que Rosa retirou de seu cofrinho e marque a opção que traz uma informação correta sobre ela: A-( ) possui 30 centenas. B-( ) possui 18 divisores primos. C-( ) possui 2 algarismos significativos. D-( ) possui 3 divisores primos. E-( ) possui a seguinte decomposição em fatores primos 22 x 32 x 52. 16ª QUESTÃO: Um caminhão transportou um camelo, um hipopótamo e um elefante para o zoológico. O camelo foi transportado na primeira viagem e pesava a quarta parte do peso total dos 3 animais juntos. O hipopótamo foi transportado na segunda viagem e pesava 2 do restante desse peso total. Já o elefante foi transportado na terceira 5 viagem e era o mais pesado, com 4,5 toneladas. Quantas toneladas pesavam os três animais juntos? A-( ) 10 toneladas B-( ) 11,5 toneladas C-( ) 9,5 toneladas D-( ) 10,5 toneladas E-( ) 11 toneladas 17ª QUESTÃO: Um comerciante comprou uma caixa de maçãs e encontrou 60 maçãs estragadas, que corresponde a dois quintos do total de maçãs da caixa. Por quanto esse comerciante deve vender as maçãs que não estão estragadas para receber 45 reais? A-( ) vinte e cinco centavos B-( ) trinta centavos C-( ) quarenta centavos D-( ) cinquenta centavos E-( ) cinquenta e cinco centavos .7. 18ª QUESTÃO: Qual é o valor do expoente a na forma fatorada 25 x 3a+1 x 5, para que o número natural correspondente tenha 60 divisores? A-( )2 B-( )3 C-( )4 D-( )5 E-( )6 19ª QUESTÃO: Um numeral de 4 algarismos diferentes satisfaz as condições abaixo: • O algarismo da 4a ordem é o dobro do algarismo da 1a ordem. • O algarismo da 4a ordem tem 2 unidades a mais do que o algarismo da 3a ordem. • O algarismo da 2a ordem tem 5 unidades a mais do que o algarismo da 1a ordem. • O algarismo da 2a ordem tem 1 unidade a mais do que o algarismo da 4a ordem. O numeral procurado, escrito em romanos, é: A-( B-( C-( D-( E-( IV DCXCVIII ) VIIICDXCVI ) IV DCLXXXIX ) VIIICDLXIX ) VIII DCXCIV ) 20ª QUESTÃO: Tati escreveu os números naturais em figuras triangulares de acordo com o padrão abaixo: Nomeando as casas de cada um desses triângulos com as letras A, B, C, D, E, F, G, H e I, como na figura abaixo, ela pode codificar cada número natural por meio do número do triângulo e da letra da casa em que aparece. Por exemplo, o número 5 é codificado por 1E, pois aparece na casa E do triângulo 1. Já o número 26 é codificado por 3H, pois aparece na casa H do triângulo 3. Como Tati codifica o número 2014? A-( ) 222 F B-( ) 223 G C-( ) 223 H D-( ) 224 F E-( ) 224 G